Exercise 14.1

- **Q.1** In $\triangle ABC$ $\overline{DE} \parallel \overline{BC}$
- If $\overline{AD} = 1.5 \text{cm}$ $\overline{BD} = 3 \text{cm}$ **(i)** \overline{AE} = 1.3 cm, then find \overline{CE} $\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AE}}{\overline{EC}}$

By substituting the values of \overline{AD} , \overline{BD} and \overline{AE} So

$$\frac{1.5}{3} = \frac{1.3}{EC}$$

$$\overline{EC}(1.5) = 1.3 \times 3$$

$$\overline{EC} = \frac{1.3 \times 3}{1.5}$$

$$\overline{EC} = \frac{3.9}{1.5}$$

$$\overline{EC} = 2.6 \,\mathrm{cm}$$

If $AD = 2.4cm \overline{AE} = 3.2cm$ (ii)

$$\overline{EC} = 4.8$$
cm find AB

$$\frac{AD}{AB} = \frac{AE}{AC}$$

$$\overline{AB} - \overline{AC}$$

$$\overline{AC} = AE + EC$$

$$\overline{AC} = 3.2 + 4.8$$

$$\overline{AC} = 8cm$$

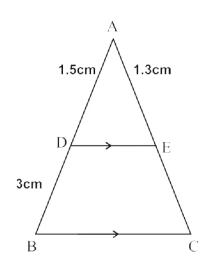
$$\therefore \frac{\overline{AD}}{\overline{AB}} = \frac{\overline{AE}}{\overline{AC}}$$

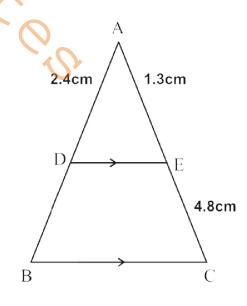
$$\frac{2.4}{AB} = \frac{3.2}{8}$$

$$2.4 \times 8 = (3.2)\overline{AB}$$

$$\frac{19.2}{3.2} = \overline{AB}$$

$$\overline{AB} = 6cm$$





(iii) If
$$\frac{\overline{AD}}{\overline{BD}} = \frac{3}{5}\overline{AC} = 4.8cm$$
 find \overline{AE}

$$\overline{AC} = \overline{AE} + \overline{EC}$$

$$\overline{AC} = \overline{EC} + \overline{AE}$$

$$\overline{AE} = 4.8 - \overline{EC}$$

$$\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AE}}{\overline{EC}}$$

$$\overline{\overline{\mathrm{BD}}} - \overline{\overline{\mathrm{EC}}}$$

$$\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AC} - \overline{EC}}{\overline{EC}}$$

$$\frac{3}{5} = \frac{4.8 - EC}{EC}$$

$$\frac{1}{5} = \frac{1}{EC}$$

$$3(\overline{EC}) = 5(4.8 - \overline{EC})$$

$$3(\overline{EC}) = 24 - 5(\overline{EC})$$

$$3(\overline{EC}) + 5(\overline{EC}) = 24$$

$$8(\overline{EC}) = 24$$

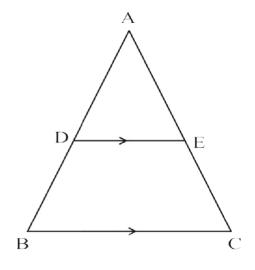
$$\left(\overline{EC}\right) = \frac{\cancel{24}^3}{\cancel{8}}$$

$$\overline{EC} = 3cm$$

$$\overline{AE} = \overline{AC} - \overline{EC}$$

$$=4.8-3$$

$$=1.8cm$$



(iv) If
$$\overline{AD} = 2.4 \text{cm} \overline{AE} = 3.2 \text{cm} \overline{DE} = 2 \text{cm} \overline{BC} = 5 \text{cm}$$
. Find \overline{AB} , \overline{DB} , \overline{AC} , \overline{CE} .

$$\frac{\overline{AD}}{\overline{AB}} = \frac{\overline{AE}}{\overline{AC}} = \frac{\overline{DE}}{\overline{BC}}$$

$$\frac{2.4}{AB} = \frac{3.2}{AC} = \frac{2}{5}$$

$$\frac{2.4}{AB} = \frac{2}{5}$$

$$(2.4)5 = 2(AB)$$

$$\frac{12.0}{2} = AB$$

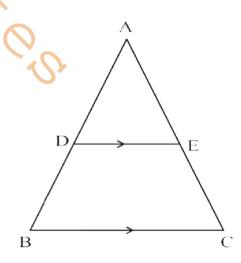
$$\overline{AB} = 6 \text{ cm}$$

$$\frac{3.2}{AC} = \frac{2}{5}$$

$$16.0 = 2(AC)$$

$$\frac{16^{8}}{AB} = AC$$

 $\overline{AC} = 8cm$



$$\overline{DB} = \overline{AB} - \overline{AD}$$

$$\overline{DB} = 6 - 2.4$$

$$\overline{BD} = 3.6 \text{ cm}$$

$$\overline{AB} = \overline{AE}$$

$$\overline{AC}$$

$$\frac{2.4}{6} = \overline{AE}$$

$$\overline{AE} = \frac{2.4}{6} \times 8$$

$$\overline{AE} = \frac{19.2}{6}$$

$$\overline{AE} = 3.2 \text{ cm}$$

$$\overline{CE} = \overline{AC} - \overline{AE}$$

$$\overline{CE} = 8 - 3.2$$

$$\overline{CE} = 4.8 \text{ cm}$$

If
$$\overline{AD} = 4x - 3$$
 $\overline{AE} = 8x - 7$

$$\overline{BD} = 3x - 1$$
 and $CE = 5x - 3$ Find the value of x

$$\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AE}}{EC}$$

By putting the value of \overline{AD} , \overline{AE} , \overline{BD} and \overline{CE}

$$\frac{4x-3}{3x-1} = \frac{8x-7}{5x-3}$$

By cross multiplying

$$(4x -3) (5x-3) = (8x-7) (3x-1)$$

$$20x^2 - 12x - 15x + 9 = 24x^2 - 8x - 21x + 7$$

$$20x^2 - 27x + 9 = 24x^2 - 29x + 7$$

$$0 = 24x^2 - 20x^2 - 29x + 27x + 7 - 9$$

$$4x^2 - 2x - 2 = 0$$

$$2(2x^2 - x - 1) = 0$$

$$2x^2 - 2x + 1x - 1 = \frac{0}{2}$$

$$2x(x-1) + 1(x-1) = 0$$

$$(x-1)(2x+1) = 0$$

$$x - 1 = 0 2x + 1 = 0$$

$$x = 1 2x = -1$$

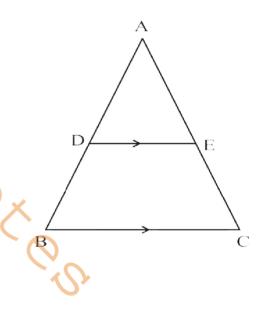
$$x = -\frac{1}{2}$$

Distance is not taken in negative it is always in positive so the value of x = 1.

Q.2 In $\triangle ABC$ is an isosceles triangle $\angle A$ is vertex angle and \overline{DE} intersects the sides \overline{AB} and \overline{AC} as shown in the figure so that

$$m\overline{AD}$$
: $m\overline{DB} = m\overline{AE}$: $m\overline{EC}$

Prove that $\triangle ADE$ is also an isosceles triangle.



Given:

 ΔABC is an isosceles triangle, $\angle A$ is vertex and \overline{DE} intersects the sides \overline{AB} and \overline{AC} .

$$\frac{\overline{\text{mAD}}}{\overline{\text{mBD}}} = \frac{\overline{\text{mAE}}}{\overline{\text{mEC}}}$$
To Prove

$$m\overline{AD} = m\overline{AE}$$

Proof

$$\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AE}}{\overline{EC}}$$

Or
$$\frac{\overline{BD}}{\overline{AD}} = \frac{\overline{EC}}{\overline{AE}}$$

Or
$$\frac{\overline{AD} + \overline{BD}}{\overline{AD}} = \frac{\overline{AE} + \overline{EC}}{\overline{EC}}$$

As we know

$$\overline{AB} = \overline{AD} + \overline{BD}$$

$$\overline{AC} = \overline{AE} + \overline{EC}$$

$$\frac{\overline{AB}}{\overline{AD}} = \frac{\overline{AC}}{\overline{AE}}$$

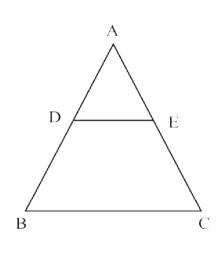
From this

$$\frac{\overline{AB}}{\overline{AB}} = \frac{\overline{AC}}{\overline{AB}}$$

$$\overline{AD}$$
 \overline{AE}

$$\underline{AD} = \underline{AE}$$

$$\overline{AB} = \overline{AC}$$
 (Given)



Q.3 In an equilateral triangle ABC shown in the figure $m\overline{AE}:m\overline{AC}=m\overline{AD}:m\overline{AB}$ find all the three angles of ΔADE and name it also. Given

 ΔABC is equilateral triangle

To prove

To find the angles of $\triangle ADE$

Solution:

$$\frac{m\overline{AE}}{m\overline{AC}} = \frac{m\overline{AD}}{m\overline{AB}}$$

All angles are equal as it is an equilateral triangle which are equal to 60° each

$$\angle A = \angle B = \angle C$$

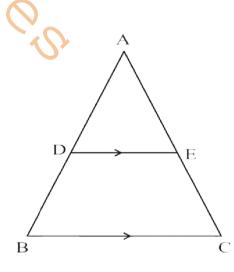
$$m\overline{BC}||m\overline{DE}|$$

$$\angle ADE = \angle ABC = 60^{\circ}$$

$$\angle AED = \angle ACB = 60^{\circ}$$

$$\angle A = 60^{\circ}$$

 ΔADE is an equilateral triangle



Q.4 Prove that line segment drawn through the midpoint of one side of a triangle and parallel to another side bisect the third side Δ

Given

$$\overline{AD} = \overline{BD}$$

$$\overline{\rm DE}||\overline{\rm BC}$$

To Prove

$$\overline{AE} = \overline{EC}$$

In
$$\triangle ABC$$

$$\overline{DE}||\overline{BC}$$

In theorem it is already discussed that

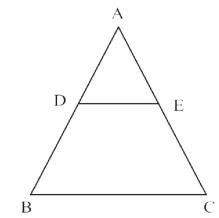
$$\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AE}}{\overline{EC}}$$

As we know $\overline{AD} = \overline{BD}$ or $\overline{BD} = \overline{AD}$

$$\frac{\overline{AD}}{\overline{AD}} = \frac{\overline{AE}}{\overline{EC}}$$

$$1 = \frac{\overline{AE}}{\overline{EC}}$$

$$\overline{EC} = \overline{AE}$$



М

Q.5 Prove that the line segment joining the midpoint of any two sides of a triangle is parallel to the third side

Given

 \triangle ABC the midpoint of \overline{AB} and \overline{AC} are L and M respectively

To Prove

$$\overline{LM} || \overline{BC} \text{ and } m\overline{LM} = \frac{1}{2}\overline{BC}$$

Construction

Join M to L and produce $\overline{\text{ML}}$ to N such that

$$\overline{ML} \cong \overline{LN}$$

Join N to B and in the figure name the angles

$$\angle 1$$
, $\angle 2$, and $\angle 3$

Proof

11001	
Statements	Reasons
$\Delta BLN \leftrightarrow \Delta ALM$	
$\overline{\mathrm{BL}}\cong\mathrm{AL}$	Given
$\angle 2 = \angle 1$ or $\angle 1 = \angle 2$	Vertical angles
$\overline{NL} = \overline{ML}$	Construction
$\therefore \Delta BLN \cong \Delta ALM$	Corresponding angle of congruent triangles Given
∴∠A =∠3	
And $\overline{NB} \cong \overline{AM}$	
$\overline{\text{NB}} \overline{\text{AM}} $	

 $\overline{ML} = \overline{AM}$ $\overline{NB} \cong \overline{ML}$ $\overline{BC} \overline{MN} \text{ is }$

 $\overline{BC}\overline{MN}$ is parallelogram

 $\therefore \overline{BC} || \overline{LM} \text{ or } \overline{BC} || \overline{NL}$

 $\overline{\mathrm{BC}} \cong \overline{\mathrm{NM}}$

 $mLM = \frac{1}{2}m\overline{NM}$

Hence $m\overline{LM} = \frac{1}{2}m\overline{BC}$

Given

(Opposite side of parallelogram BCMN)

(Opposite side of parallelogram)

Theorem 14.1.3

The internal bisector of an angle of a triangle divides the sides opposite to it in the ratio of the lengths of the sides containing the angle.

Given

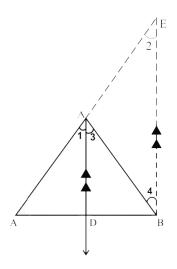
In $\triangle ABC$ internal angle bisector of $\angle A$ meets \overline{CB} at the points D.

To prove

$$m\overline{BD}:m\overline{DC}=m\overline{AB}:m\overline{AC}$$

Construction

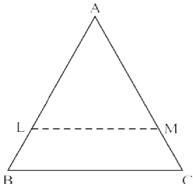
Draw a line segment $\overline{BE}||\overline{DA}|$ to meet \overline{CA} Produced at E

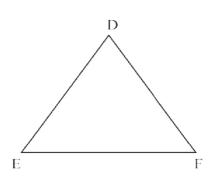


11001	
Statements	Reasons
$: \overline{AD} \overline{EB}$ and \overline{EC} intersect them	Construction
$m\angle 1 = m\angle 2(i)$	Corresponding angles
Again $\overline{AD} \overline{EB} $ and \overline{AB} intersects them	
\therefore m $\angle 3 = m\angle 4 \dots (ii)$	Alternate angles
But $m \angle 1 = m \angle 3$	Given
∴ m∠2 = m∠4	From (i) and (ii)
And $\overline{AB} \cong \overline{AE}$ or $\overline{AE} \cong \overline{AB}$	In a Δ , the sides opposite to congruent angles are also congruent
Now $\overline{AD} \parallel \overline{EB}$	Construction
$\therefore \frac{\overline{mBD}}{\overline{mDC}} = \frac{\overline{mEA}}{\overline{mAC}}$	A line parallel to one side of a triangle and intersecting the other two sides divides them proportionally.
or $\frac{\overline{mBD}}{\overline{mDC}} = \frac{\overline{mAB}}{\overline{mAC}}$	$m\overline{EA} = m\overline{AB} (proved)$
Thus $m\overline{BD}: m\overline{DC} = m\overline{AB}: \overline{AC}$	

Theorem 14.1.4

If two triangles are similar, then the measures of their corresponding sides are proportional





Given

$$\triangle$$
ABC ~ \triangle DEF

i.e
$$\angle A \cong \angle D$$
, $\angle B \cong \angle E$ and $\angle C \cong \angle F$

To Prove

$$\frac{m\overline{AB}}{m\overline{DE}} = \frac{m\overline{AC}}{m\overline{DF}} = \frac{m\overline{BC}}{m\overline{EF}}$$

Construction

- (I) Suppose that $mAB > m\overline{DE}$
- (II) $m\overline{AB} \le m\overline{DE}$

On \overline{AB} take a point L such that $\overline{mAL} = \overline{mDE}$

On \overline{AC} take a point M such that $\overline{mAM} = \overline{mDF}$ Join L and M by the line segment LM

Proof

mAB

mBC

Statements	Reasons
In $\triangle ALM \leftrightarrow \triangle DEF$	
$\angle A \cong \angle D$	Given
$\overline{AL} \cong \overline{DE}$	Construction
$\overline{AM} \cong \overline{DF}$	Construction
Thus $\triangle ALM \cong \triangle DEF$	S.A.S Postulate
And $\angle L \cong \angle E$, $\angle M \cong \angle F$	(Corresponding angles of congruent triangles)
Now $\angle E \cong \angle B$ and $\angle F \cong \angle C$	Given
$\therefore \angle L \cong \angle B, \angle M \cong \angle C$	Transitivity of congruence
Thus $\overline{\mathrm{LM}} \overline{\mathrm{BC}}$	Corresponding angles are equal
Hence $\frac{m\overline{AL}}{m\overline{AB}} = \frac{m\overline{AM}}{m\overline{AC}}$	A line parallel to one side of a triangle and intersecting the other two sides divides them proportionally.
Or $\frac{m\overline{DE}}{m\overline{AB}} = \frac{m\overline{DF}}{m\overline{AC}}$ (i)	$m\overline{AL} = m\overline{DE}$ and $m\overline{AM} = m\overline{DF}$ (Construction)
Similarly by intercepting segments on	
$\overline{\mathrm{BA}}$ and $\overline{\mathrm{BC}}$, we can prove that	
$\frac{\overline{mDE}}{\overline{m}} = \frac{\overline{mEF}}{\overline{mEF}}$ (ii)	

Thus $\frac{\overline{mDE}}{\overline{mAB}} = \frac{\overline{mDF}}{\overline{mAC}} = \frac{\overline{mEF}}{\overline{mBC}}$		
Or $\frac{\overline{MAB}}{\overline{MDE}} = \frac{\overline{MAC}}{\overline{mDF}} = \frac{\overline{MBC}}{\overline{mEF}}$		
If $m\overline{AB} = m\overline{DE}$		
Then in $\triangle ABC \leftrightarrow \triangle DEF$		
(II) If $m\overline{AB} < m\overline{DE}$, it can similarly be		
proved by taking intercepts on the sides		
ΔDEF		
$\angle A \cong \angle D$		
$\angle B \cong \angle E$		
And $\overline{AB} \cong \overline{DE}$		
So \triangle ABC \cong \triangle DEF		
Thus $\frac{\overline{MAB}}{\overline{MDE}} = \frac{\overline{MAC}}{\overline{MDF}} = \frac{\overline{MBC}}{\overline{MEF}} = 1$		

Hence the result is true for all the cases.

By (i) and (ii) By taking reciprocals of $A.S.A \cong A.S.A \\$

 $\overline{AC} \cong \overline{DF}, \overline{BC} \cong \overline{EF}$

Exercise 14.2

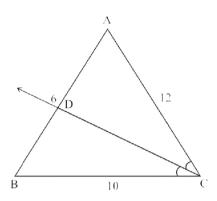
In $\triangle ABC$ as shown in the figure \overrightarrow{CD} bisects $\angle C$ and meets \overrightarrow{AB} at $D.m\overrightarrow{BD}$ is equal **Q.1**

$$\frac{\frac{m\overline{BD}}{m\overline{DA}}}{\frac{m\overline{DA}}{BD}} = \frac{m\overline{BC}}{m\overline{CA}}$$

$$\frac{\overline{\mathbf{BD}}}{6} = \frac{10}{12}$$

$$\overline{BD} = \frac{\cancel{10}^5 \times \cancel{6}^2}{\cancel{12}} \text{ or } \overline{BD} = \frac{10 \times 6}{12} = \cancel{60}^5$$

$$\overline{BD} = 5$$



In $\triangle ABC$ shown in the figure \overrightarrow{CD} bisects $\angle C$. If $\overrightarrow{mAC} = 3$, $\overrightarrow{CB} = 6$ and $\overrightarrow{mAB} = 7$ **Q.2** then find \overline{MAD} and \overline{DB}

$$\overline{AB} = \overline{AD} + \overline{BD}$$

$$\overline{AD} = \overline{AB} - \overline{BD}$$

$$\overline{AD} = 7 - x$$

$$\frac{\overline{\text{mAD}}}{\overline{\text{mBD}}} = \frac{\overline{\text{mAC}}}{\overline{\text{mCB}}}$$

$$\frac{x}{7-x} = \frac{\cancel{5}^1}{\cancel{6}_2}$$

$$\frac{x}{7-x} = \frac{1}{2}$$
$$2x = 7-x$$

$$7 - X$$
 $2X = 7 - X$

$$2x + x = 7$$

$$3x = 7$$

$$x = \frac{7}{3}$$
 or $\overline{AD} = \frac{7}{3}$

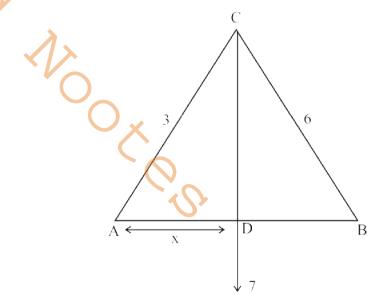
$$\overline{AB} = \overline{AD} + \overline{BD}$$

$$7 = \frac{7}{3} + \overline{BD}$$

$$7 - \frac{7}{3} = \overline{BD}$$

$$\frac{21-7}{3} = \overline{BD}$$

$$\overline{BD} = \frac{14}{3}$$



Q.3 Show that in any corresponding of two triangles if two angles of one triangle are congruent to the corresponding angles of the other, then the triangle are similar

 ΔABC and Δ DEF

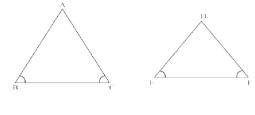
$$\angle B \cong \angle E$$

$$\angle C \cong \angle F$$

To Prove

$$\Delta ABC \cong \Delta DEF$$

Proof



Statements	Reasons
$\angle A + \angle B + \angle C = 180^{\circ}$	Sume of three angles of a triangle = 180°
$\angle D + \angle E + \angle F = 180$	
$\angle A \cong \angle D$	
$\angle \mathbf{B} = \angle \mathbf{E}$	
$\angle C = \angle F$	
Hence \triangle ABC \cong \triangle DEF	

Q.4 If line segment \overline{AB} and \overline{CD} are intersecting at point X and $\frac{m\overline{AX}}{m\overline{XB}} = \frac{m\overline{CX}}{m\overline{XD}}$ then show that ΔAXC and ΔBXD are similar

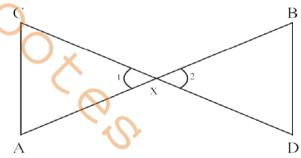
Given

Line segment \overline{AB} and \overline{CD} intersect at X

$$\frac{m\overline{AX}}{m\overline{XB}} = \frac{m\overline{CX}}{m\overline{XD}}$$

To Prove

 Δ CXA and Δ DXB are similar



Proof

Statements	Reasons
$\frac{\overline{AX}}{\overline{XB}} = \frac{\overline{CX}}{\overline{XD}}$	Given
∠1≅∠2	
$\overline{AC} \overline{BD}$	Vertical angles
$\angle A = m \angle B$	
$m\angle C = m\angle D$	Alternate angles
Hence proved the triangle are similar	

Review Exercise 14

Q.1 Which of the following are true which are false?

- (i) Congruent triangles are of same size and shape. (True)
- (ii) Similar triangles are of same shape but different sizes. (True)
- (iii) Symbol used for congruent is '~' (False)
- (iv) Symbol used for similarity is \cong (False)
- (v) Congruent triangle are similar (True)
- (vi) Similar triangles are congruent (False)
- (vii) A line segment has only one midpoint (True)
- (viii) One and only one line can be drawn through two points (True)
- (ix) Proportion is non equality of two ratio (False)
- (x) Ratio has no unit (True)

Q.2 Define the following

(i) Ratio

The ratio between two a like quantities is defined as $a:b=\frac{a}{b}$ where a and are the elements of the ratio.

(ii) Proportion

Proportion is defined as the equality of two ratio i, e a : b = c : d

(iii) Congruent Triangles

Two triangles are said to be congruent (symbols =) if there emits a corresponding betweet them such that all the corresponding sides and angles are congruent.

(iv) Similar Triangles

If two triangles are similar then the measures of their corresponding sides are proportional.

Q.3 In Δ LMN shown in the figure $\overline{MN} || \overline{PQ}$

(i) If
$$mLM = 5cm$$
, $m\overline{LP} = 2.5cm$

mLQ = 2.3 cm then find LN

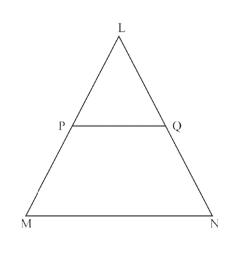
$$\frac{m\overline{LP}}{m\overline{LM}} = \frac{m\overline{LQ}}{m\overline{LN}}$$
2.5 2.3

$$\frac{2.3}{5} = \frac{2.3}{\overline{LN}}$$

$$(2.5) \ \overline{LN} = 5 \times 2.3$$

$$\overline{LN} = \frac{11.5}{2.5}$$

$$\overline{LN} = 4.6$$
cm



(ii) If
$$mLM = 6cm$$
, $mLQ = 2.5cm$
 $mQN = 5cm$ then find
 mLP

$$\frac{\overline{\text{mLP}}}{\overline{\text{mLM}}} = \frac{\overline{\text{mLQ}}}{\overline{\text{mLN}}}$$

$$\frac{\underline{\text{LP}}}{6} = \frac{2.5}{\underline{\text{LN}}}$$

$$\overline{\text{LN}} = \overline{\text{LQ}} + \overline{\text{QN}}$$

$$\overline{LN} = 2.5 + 5$$

$$\overline{\text{LN}} = 7.5$$

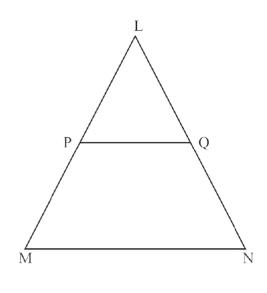
$$\frac{LN}{LN} = 7.5 \text{cm}$$

$$\frac{\overline{LP}}{6} = \frac{2.5}{7.5}$$

$$\overline{LP} = \frac{2.5 \times 6}{7.5}$$

$$\overline{LP} = \frac{15}{7.5}$$

$$\overline{LP} = 2cm$$



In the show figure let mPA = 8x - 7 mPB = 4x - 3 m $\overline{AQ} = 5x - 3$ **Q.4**

 $\overline{MBR} = 3x - 1$ find the value of x if $\overline{AB} \parallel \overline{QR}$

$$\frac{\text{mPA}}{\text{mAQ}} = \frac{\text{mBP}}{\text{mBR}}$$

$$\frac{8x-7}{5x-3} = \frac{4x-3}{3x-1}$$

By cross multiplying

$$(8x-7)(3x-1)=(4x-3)(5x-3)$$

$$24x^2 - 8x - 21x + 7 = 20x^2 - 12x - 15x + 9$$

$$24x^2 - 29x + 7 = 20x^2 - 27x + 9$$

$$24x^2 - 20x^2 - 29x + 27x + 7 - 9 = 0$$

$$4x^2 - 2x - 2 = 0$$

$$4x^2 - 4x + 2x - 2 = 0$$

$$4x(x-1) + 2(x-1) = 0$$

$$(x-1)(4x+2)=0$$

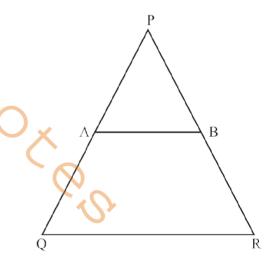
$$x - 1 = 0$$

$$x = 1$$

$$4x + 2 = 0$$

$$4x = -2$$

$$\mathbf{x} = \frac{-\mathbf{z}^1}{\mathbf{z}_2}$$



$$x = \frac{-1}{2}$$

Length is always taken as positive not negative so value of x = 1

Q.5 In \triangle LMN Shown in figure \overrightarrow{LA} bisects \angle L. If $\overrightarrow{mLN} = 4m \ \overrightarrow{mLM} = 6cm \ \overrightarrow{mMN} = 8$ then find

 $m\overline{MA}$ and $m\overline{AN}$

$$\frac{m\overline{MA}}{m\overline{AN}} = \frac{m\overline{LM}}{m\overline{LN}}$$

$$\overline{MA} = x$$

$$\overline{AN} = 8-x$$

$$\frac{x}{8-x} = \frac{6}{4}$$

$$4x = 6(8-x)$$

$$4x = 48 - 6x$$

$$4x + 6x = 48$$

$$10x = 48$$

$$x = \frac{48}{10}$$

$$x = 4.8cm$$

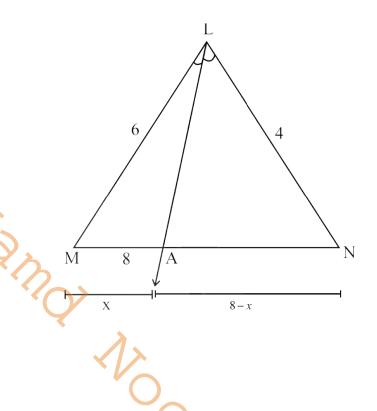
$$m\overline{MA} = 4.8cm$$

$$\overline{MN} = \overline{MA} + \overline{AN}$$

$$8 = 4.8 + \overline{AN}$$

$$8-4.8 = \overline{AN}$$

$$\overline{AN} = 3.2cm$$



Q.6 In Isosceles $\triangle PQR$ Shown in the figure, find the value of x and y

As we know that it is isosceles triangle

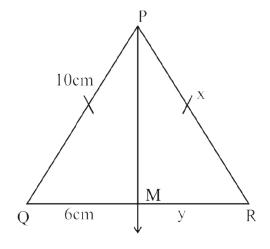
So

$$\overline{PQ} = \overline{RP}$$

$$10 = x$$

Or

$$x = 10$$
cm



$\overline{PM} \bot \overline{QR}$

So it bisects the side and bisects the angle also

A) Hamp tooker

SO $\overline{QM} = \overline{MR}$

6 = y

Or

y = 6 cm

Unit 14: Ratio and Proportion

Overview

Theorem 14.1.1

A line parallel to one side of a triangle and intersecting the other two sides divides them proportionally.

Given:

In $\triangle ABC$, the line ℓ is intersecting the sides AC and \overline{AB} at points E and D respectively such that

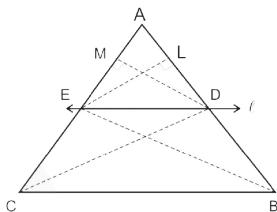
$$\overline{\mathrm{ED}} || \overline{\mathrm{CB}}$$

To Prove

 $\overline{MAD}:\overline{DB}=\overline{MAE}:\overline{MEC}$

Construction:

Join B to E and C to D From D draw $\overline{DM} \perp \overline{AC}$ and from E draw $\overline{EL} \perp \overline{AB}$



Proof

Statements

In triangles BED and AED, EL is the common perpendicular

$$\therefore Area of ΔBED = \frac{1}{2} \times m\overline{BD} \times m\overline{EL}.....(i)$$

and Area of
$$\triangle AED = \frac{1}{2} \times m\overline{AD} \times m\overline{EL}$$
.....(ii)

Thus Area of
$$\frac{\Delta BED}{\Delta AED} = \frac{m\overline{DB}}{m\overline{AD}}$$
.....(iii)

Similarly

$$\frac{\text{Area of } \Delta \text{CDE}}{\text{Area of } \Delta \text{ADE}} = \frac{m\overline{\text{EC}}}{m\overline{\text{AE}}}.....(iv)$$

But $\triangle BED \cong \triangle CDE$

$$\frac{m\overline{DB}}{m\overline{AD}} = \frac{m\overline{EC}}{m\overline{AE}} \text{ or }$$

$$\frac{m\overline{AD}}{m\overline{DB}} = \frac{m\overline{AE}}{m\overline{EC}}$$
Hence $m\overline{AD} : m\overline{DB} = m\overline{AE} : m\overline{EC}$

Reasons

Area of a $\Delta = \frac{1}{2}$ (base)(height)

Dividing (i) by (ii)

(Areas of triangles with common base and same altitudes are equal. Given that $\overline{ED}||\overline{CB}|$, so altitudes are equal).

Taking reciprocal of both sides.

Theorem: 14.1.2 Converse of Theorem 14.1.1

If a line segment intersects the two sides of a triangle in the same ratio, then it is parallel to the third side.

Given

In $\triangle ABC$, \overline{ED} intersect \overline{AB} and \overline{AC} such that $m\overline{AD}$: $\overline{DB} = m\overline{AE}$: $m\overline{EC}$

To Prove

$$\overline{ED} \parallel \overline{CB}$$

Construction

If $\overline{ED} \not | \overline{CB}$ then draw $\overline{BF} || \overline{DE}$ to meet \overline{AC}

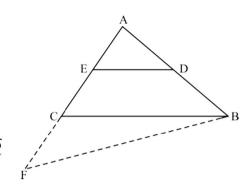
Produced at F

∴ Our supposition is wrong

Proof

with C.

Hence $\overline{ED} \parallel \overline{CB}$



Statements In $\triangle ABF$ $\overline{DE} \parallel \overline{BF}$ $\therefore \frac{m\overline{AD}}{m\overline{DB}} = \frac{m\overline{AE}}{m\overline{EF}}$ But $\frac{m\overline{AD}}{m\overline{DB}} = \frac{m\overline{AE}}{m\overline{EC}}$(ii) $\therefore \frac{m\overline{AE}}{m\overline{EF}} = \frac{m\overline{AE}}{m\overline{EC}}$ or $m\overline{EF} = m\overline{EC}$, This is possible only if point F is coincident

Construction

(A line parallel to one side of a triangle divides the other two sides proportionally Theorem 14.1.1)

Reasons

Given

From (i) and (ii)

(Property of real numbers)