Exercise 14.2 In $\triangle ABC$ as shown in the figure \overrightarrow{CD} bisects $\angle C$ and meets \overrightarrow{AB} at $D.m\overrightarrow{BD}$ is equal $$\overline{BD} = \frac{\cancel{10^{5}} \times \cancel{6}^{2}}{\cancel{12^{4}}} \text{ or } \overline{BD} = \frac{10 \times 6}{12} = \cancel{60^{5}}$$ $$\overline{BD} = 5$$ In $\triangle ABC$ shown in the figure \overrightarrow{CD} bisects $\angle C$. If $\overrightarrow{mAC} = 3$, $\overrightarrow{CB} = 6$ and $\overrightarrow{mAB} = 7$ **Q.2** then find \overline{MAD} and \overline{DB} $$\overline{AB} = \overline{AD} + \overline{BD}$$ $$\overline{AD} = \overline{AB} - \overline{BD}$$ $$\overline{AD} = 7 - x$$ $$\frac{m\overline{AD}}{m\overline{BD}} = \frac{m\overline{AC}}{m\overline{CB}}$$ $$\frac{x}{7-x} = \frac{\cancel{5}^1}{\cancel{6}_2}$$ $$\frac{x}{7-x} = \frac{1}{2}$$ $$2x = 7-x$$ $$7 - x$$ 2 $2x = 7 - x$ $$2x + x = 7$$ $$3x = 7$$ $$x = \frac{7}{3}$$ or $\overline{AD} = \frac{7}{3}$ $$\overline{AB} = \overline{AD} + \overline{BD}$$ $$7 = \frac{7}{3} + \overline{BD}$$ $$7 - \frac{7}{3} = \overline{BD}$$ $$\frac{21-7}{3} = \overline{BD}$$ $$\overline{BD} = \frac{14}{3}$$ Q.3 Show that in any corresponding of two triangles if two angles of one triangle are congruent to the corresponding angles of the other, then the triangle are similar \triangle ABC and \triangle DEF $$\angle B \cong \angle E$$ $$\angle C \cong \angle F$$ To Prove $$\triangle ABC \cong \triangle DEF$$ Proof | Statements | Reasons | |--|--| | $\angle A + \angle B + \angle C = 180^{\circ}$ | Sume of three angles of a triangle = 180° | | $\angle D + \angle E + \angle F = 180$ | | | $\angle A \cong \angle D$ | | | $\angle \mathbf{B} = \angle \mathbf{E}$ | | | $\angle C = \angle F$ | | | Hence \triangle ABC \cong \triangle DEF | | Q.4 If line segment \overline{AB} and \overline{CD} are intersecting at point X and $\frac{m\overline{AX}}{m\overline{XB}} = \frac{m\overline{CX}}{m\overline{XD}}$ then show that ΔAXC and ΔBXD are similar Given Line segment \overline{AB} and \overline{CD} intersect at X $$\frac{m\overline{AX}}{m\overline{XB}} = \frac{m\overline{CX}}{m\overline{XD}}$$ To Prove Δ CXA and Δ DXB are similar ## Proof | Statements | Reasons | |---|------------------| | $\frac{\overline{AX}}{\overline{XB}} = \frac{\overline{CX}}{\overline{XD}}$ | Given | | ∠1≅∠2 | ' Q | | $\overline{AC} \overline{BD}$ | Vertical angles | | $\angle A = m \angle B$ | | | $m\angle C = m\angle D$ | Alternate angles | | Hence proved the triangle are similar | |