Exercise 14.1

- In $\triangle ABC$ **Q.1** $\overline{DE} \parallel \overline{BC}$
- If $\overline{AD} = 1.5 \text{cm} \overline{BD} = 3 \text{cm}$ **(i)** \overline{AE} =1.3cm, then find \overline{CE} $\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AE}}{\overline{EC}}$

By substituting the values of \overline{AD} , \overline{BD} and \overline{AE} So

$$\frac{1.5}{3} = \frac{1.3}{EC}$$

$$\overline{EC}(1.5) = 1.3 \times 3$$

$$\overline{EC} = \frac{1.3 \times 3}{1.5}$$

$$\overline{EC} = \frac{3.9}{1.5}$$

$$\overline{EC} = 2.6 \,\mathrm{cm}$$

If $AD = 2.4cm \overline{AE} = 3.2cm$ (ii)

$$\overline{EC} = 4.8$$
cm find AB

$$\frac{AD}{AB} = \frac{AE}{AC}$$

$$AB - AC$$

$$\overline{AC} = AE + EC$$

$$\overline{AC} = 3.2 + 4.8$$

$$\overline{AC} = 8cm$$

$$\therefore \frac{\overline{AD}}{\overline{AB}} = \frac{\overline{AE}}{\overline{AC}}$$

$$\frac{2.4}{AB} = \frac{3.2}{8}$$

$$2.4 \times 8 = (3.2)\overline{AB}$$

$$\frac{19.2}{3.2} = \overline{AB}$$

$$\overline{AB} = 6cm$$

(iii) If
$$\frac{\overline{AD}}{\overline{BD}} = \frac{3}{5}\overline{AC} = 4.8cm$$
 find \overline{AE}

$$\overline{AC} = \overline{AE} + \overline{EC}$$

$$\overline{AC} = \overline{EC} + \overline{AE}$$

$$\overline{AE} = 4.8 - \overline{EC}$$

$$\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AE}}{\overline{EC}}$$

$$\overline{\mathrm{BD}}$$
 $\overline{\mathrm{EC}}$

$$\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AC} - \overline{EC}}{\overline{EC}}$$

$$\overline{\overline{BD}} = \overline{\overline{EC}}$$

$$\frac{3}{5} = \frac{4.8 - EC}{EC}$$

$$3(\overline{EC}) = 5(4.8 - \overline{EC})$$

$$3(\overline{EC}) = 24 - 5(\overline{EC})$$

$$3(\overline{EC}) + 5(\overline{EC}) = 24$$

$$8(\overline{EC}) = 24$$

$$\left(\overline{EC}\right) = \frac{24^3}{8}$$

$$\overline{EC} = 3cm$$

$$\overline{AE} = \overline{AC} - \overline{EC}$$

$$=4.8-3$$

$$=1.8cm$$

If $\overline{AD} = 2.4 \text{cm} \overline{AE} = 3.2 \text{cm} \overline{DE} = 2 \text{cm} \overline{BC} = 5 \text{cm}$. Find \overline{AB} , \overline{DB} , \overline{AC} , \overline{CE} . (iv)

$$\frac{\overline{AD}}{\overline{AB}} = \frac{\overline{AE}}{\overline{AC}} = \frac{\overline{DE}}{\overline{BC}}$$

$$\frac{2.4}{AB} = \frac{3.2}{AC} = \frac{2}{5}$$

$$\frac{2.4}{AB} = \frac{2}{5}$$

$$(2.4)5 = 2(AB)$$

$$\frac{12.0}{2} = AB$$

$$\overline{AB} = 6 \text{ cm}$$

$$\frac{3.2}{AC} = \frac{2}{5}$$

$$16.0 = 2(AC)$$

 $\overline{AC} = 8cm$

$$\overline{DB} = \overline{AB} - \overline{AD}$$

$$\overline{DB} = 6 - 2.4$$

$$\overline{BD} = 3.6 \text{ cm}$$

$$\overline{AB} = \overline{AE}$$

$$\overline{AB} = \overline{AE}$$

$$\overline{AE} = \frac{\overline{AE}}{8}$$

$$\overline{AE} = \frac{2.4}{6} \times 8$$

$$\overline{AE} = \frac{19.2}{6}$$

$$\overline{AE} = 3.2 \text{ cm}$$

$$\overline{CE} = 8 - 3.2$$

$$\overline{CE} = 4.8 \text{ cm}$$

If
$$\overline{AD} = 4x - 3$$
 $\overline{AE} = 8x - 7$

$$\overline{BD} = 3x - 1$$
 and $CE = 5x - 3$ Find the value of x

$$\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AE}}{\overline{EC}}$$

By putting the value of \overline{AD} , \overline{AE} , \overline{BD} and \overline{CE}

$$\frac{4x-3}{3x-1} = \frac{8x-7}{5x-3}$$

By cross multiplying

$$(4x -3) (5x-3) = (8x-7) (3x-1)$$

$$20x^2 - 12x - 15x + 9 = 24x^2 - 8x - 21x + 7$$

$$20x^2 - 27x + 9 = 24x^2 - 29x + 7$$

$$0 = 24x^2 - 20x^2 - 29x + 27x + 7 - 9$$

$$4x^2 - 2x - 2 = 0$$

$$2(2x^2 - x - 1) = 0$$

$$2x^2 - 2x + 1x - 1 = \frac{0}{2}$$

$$2x(x-1) + 1(x-1) = 0$$

$$(x-1)(2x+1) = 0$$

$$x - 1 = 0$$

$$x = 1$$

$$2x + 1 = 0$$

$$2x = -1$$

$$x = -\frac{1}{2}$$

Distance is not taken in negative it is always in positive so the value of x = 1.

Q.2 In $\triangle ABC$ is an isosceles triangle $\angle A$ is vertex angle and \overline{DE} intersects the sides \overline{AB} and \overline{AC} as shown in the figure so that

 $m\overline{AD}$: $m\overline{DB} = m\overline{AE}$: $m\overline{EC}$

Prove that $\triangle ADE$ is also an isosceles triangle.

Given:

 ΔABC is an isosceles triangle, $\angle A$ is vertex and \overline{DE} intersects the sides \overline{AB} and \overline{AC} .

$$\frac{m\overline{AD}}{m\overline{BD}} = \frac{m\overline{AE}}{m\overline{EC}}$$
To Prove
$$m\overline{AD} = m\overline{AE}$$

Proof

$$\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AE}}{\overline{EC}}$$

Or
$$\frac{\overline{BD}}{\overline{AD}} = \frac{\overline{EC}}{\overline{AE}}$$

Or
$$\frac{\overline{AD} + \overline{BD}}{\overline{AD}} = \frac{\overline{AE} + \overline{EC}}{\overline{EC}}$$

As we know

$$\overline{AB} = \overline{AD} + \overline{BD}$$

$$\overline{AC} = \overline{AE} + \overline{EC}$$

$$\frac{\overline{AB}}{\overline{AD}} = \frac{\overline{AC}}{\overline{AE}}$$

AD AE From this

$$\frac{\overline{AB}}{\underline{=}} = \frac{\overline{AC}}{\underline{=}}$$

$$\overline{\overline{AD}} = \overline{\overline{AE}}$$

$$\overline{AD} = \overline{AE}$$

$$\overline{AB} = \overline{AC}$$
 (Given)

Q.3 In an equilateral triangle ABC shown in the figure $m\overline{AE}:m\overline{AC}=m\overline{AD}:m\overline{AB}$ find all the three angles of ΔADE and name it also. Given

 ΔABC is equilateral triangle

To prove

To find the angles of $\triangle ADE$

Solution:

$$\frac{m\overline{AE}}{m\overline{AC}} = \frac{m\overline{AD}}{m\overline{AB}}$$

All angles are equal as it is an equilateral triangle which are equal to 60° each

$$\angle A = \angle B = \angle C$$

$$m\overline{BC}||m\overline{DE}|$$

$$\angle ADE = \angle ABC = 60^{\circ}$$

$$\angle AED = \angle ACB = 60^{\circ}$$

$$\angle A = 60^{\circ}$$

 ΔADE is an equilateral triangle

Q.4 Prove that line segment drawn through the midpoint of one side of a triangle and parallel to another side bisect the third side Δ

$$\overline{AD} = \overline{BD}$$

$$\overline{DE}||\overline{BC}$$

To Prove

$$\overline{AE} = \overline{EC}$$

$$\overline{DE}||\overline{BC}$$

In theorem it is already discussed that

$$\overline{AD}$$
 \overline{AE}

As we know
$$\overline{AD} = \overline{BD}$$
 or $\overline{BD} = \overline{AD}$

$$\frac{\overline{AD}}{\overline{AD}} = \frac{\overline{AE}}{\overline{EC}}$$

$$1 = \frac{\overline{AE}}{\overline{EC}}$$

$$\overline{EC} = \overline{AE}$$

Q.5 Prove that the line segment joining the midpoint of any two sides of a triangle is parallel to the third side

Given

 ΔABC the midpoint of \overline{AB} and \overline{AC} are L and M respectively

To Prove

$$\overline{LM} || \overline{BC} \text{ and } m\overline{LM} = \frac{1}{2}\overline{BC}$$

Construction

Join M to L and produce ML to N such that

$$\overline{ML} \cong \overline{LN}$$

Join N to B and in the figure name the angles

$$\angle 1$$
, $\angle 2$, and $\angle 3$

Proof

 $\overline{ML} = \overline{AM}$ $\overline{NB} \cong \overline{ML}$ $\overline{BC} \overline{MN} \text{ is }$

 $\overline{BC}\overline{MN}$ is parallelogram

 $\therefore \ \overline{BC} \, || \overline{LM} \, \text{or} \, \overline{BC} \, || \, \overline{NL}$

 $\overline{BC}\!\cong\!\overline{N\!M}$

 $mLM = \frac{1}{2}m\overline{NM}$

Hence $m\overline{LM} = \frac{1}{2}m\overline{BC}$

Given

(Opposite side of parallelogram BCMN)

(Opposite side of parallelogram)

Theorem 14.1.3

The internal bisector of an angle of a triangle divides the sides opposite to it in the ratio of the lengths of the sides containing the angle.

Given

In $\triangle ABC$ internal angle bisector of $\angle A$ meets \overline{CB} at the points D.

To prove

 $m\overline{BD}:m\overline{DC}=m\overline{AB}:m\overline{AC}$

Construction

Draw a line segment $\overline{BE}||\overline{DA}|$ to meet \overline{CA} Produced at E

11001	
Statements	Reasons
$\therefore \overline{AD} \overline{EB}$ and \overline{EC} intersect them	Construction
$m\angle 1 = m\angle 2(i)$	Corresponding angles
Again $\overline{AD} \overline{EB} $ and $\overline{AB} $ intersects them	
∴ m∠3 = m∠4(ii)	Alternate angles
But $m \angle 1 = m \angle 3$	Given
∴ m∠2 = m∠4	From (i) and (ii)
And $\overline{AB} \cong \overline{AE}$ or $\overline{AE} \cong \overline{AB}$	In a Δ , the sides opposite to congruent angles are also congruent
Now $\overline{AD} \parallel \overline{EB}$	Construction
$\therefore \frac{m\overline{BD}}{m\overline{DC}} = \frac{m\overline{EA}}{m\overline{AC}}$	A line parallel to one side of a triangle and intersecting the other two sides divides them proportionally.
or $\frac{\overline{mBD}}{\overline{mDC}} = \frac{\overline{mAB}}{\overline{mAC}}$	$m\overline{EA} = m\overline{AB} (proved)$
Thus mBD:mDC=mAB:AC	

Theorem 14.1.4

If two triangles are similar, then the measures of their corresponding sides are proportional

Given

$$\triangle ABC \sim \triangle DEF$$

i.e
$$\angle A \cong \angle D$$
, $\angle B \cong \angle E$ and $\angle C \cong \angle F$

To Prove

$$\frac{m\overline{AB}}{m\overline{DE}} = \frac{m\overline{AC}}{m\overline{DF}} = \frac{m\overline{BC}}{m\overline{EF}}$$

Construction

- (I) Suppose that mAB>mDE
- (II) $m\overline{AB} \le m\overline{DE}$

On \overline{AB} take a point L such that $\overline{mAL} = \overline{mDE}$

On \overline{AC} take a point M such that $\overline{mAM} = \overline{mDF}$ Join L and M by the line segment LM

mEF

mBC

mDE

mAB

Proof
Statements
In $\triangle ALM \leftrightarrow \triangle DEF$
$\angle A \cong \angle D$
$\overline{AL} \cong \overline{DE}$
$\overline{AM} \cong \overline{DF}$
Thus $\triangle ALM \cong \triangle DEF$
And \angle L \cong \angle E, \angle M \cong \angle F
Now $\angle E \cong \angle B$ and $\angle F \cong \angle C$
$\therefore \angle L \cong \angle B, \angle M \cong \angle C$
Thus $\overline{LM} \overline{BC}$
Hence $\frac{m\overline{AL}}{m\overline{AB}} = \frac{m\overline{AM}}{m\overline{AC}}$
Or $\frac{m\overline{DE}}{m\overline{AB}} = \frac{m\overline{DF}}{m\overline{AC}}$ (i)
Similarly by intercepting segments on
\overline{BA} and \overline{BC} , we can prove that

....(ii)

Reasons

Given

Construction

Construction

S.A.S Postulate

(Corresponding angles of congruent triangles)

Given

Transitivity of congruence

Corresponding angles are equal

A line parallel to one side of a triangle and intersecting the other two sides divides them proportionally.

 $\overline{MAL} = \overline{MDE}$ and $\overline{MAM} = \overline{MDF}$ (Construction)

Thus $\frac{m\overline{DE}}{m\overline{AB}} = \frac{m\overline{DF}}{m\overline{AC}} = \frac{m\overline{EF}}{m\overline{BC}}$		
Or $\frac{m\overline{AB}}{m\overline{DE}} = \frac{m\overline{AC}}{m\overline{DF}} = \frac{m\overline{BC}}{m\overline{EF}}$		
If $m\overline{AB} = m\overline{DE}$		
Then in $\triangle ABC \leftrightarrow \triangle DEF$		
(II) If $m\overline{AB} < m\overline{DE}$, it can similarly be		
proved by taking intercepts on the sides		
ADEF		
$\angle A \cong \angle D$		
$\angle B \cong \angle E$		
And AB≅DE		
So \triangle ABC \cong \triangle DEF		
Thus $\frac{m\overline{AB}}{\overline{DE}} = \frac{m\overline{AC}}{\overline{DE}} = \frac{m\overline{BC}}{\overline{DE}} = 1$		
mue mur mer		

Hence the result is true for all the cases.

By (i) and (ii)

By taking reciprocals

A.S.A
$$\cong$$
 A.S.A

 $\overline{AC}\cong\overline{DF}$, $\overline{BC}\cong\overline{EF}$

and the cases.