Exercise 12.3

Q.1 Prove that the bisectors of the angles of base of an isosceles triangle intersect each other on its altitude.

Given

 ΔABC

 $\overline{AB} = \overline{AC}$ Due to isosceles triangle

Bisect $\angle B$ and $\angle C$ to intersect at point O Join A to D and extend to BC at D \overline{AD} is the altitude of $\triangle ABC$ $\overline{AD} \perp \overline{BC}$

Reasons

Proof

Statements

Statements	Keasons	
In ΔABC		
$\overline{AB} \cong \overline{AC}$	Given	
$\angle B \cong \angle C$	Due to isosceles triangle opposite angle are congruent	
$\begin{vmatrix} \frac{1}{2} m \angle B = \frac{1}{2} m \angle C \\ \angle 1 \cong \angle 3 \end{vmatrix}$	Dividing both side by 2	
$\Delta ABO \leftrightarrow \Delta ACO$		
$\frac{AO}{AO} = \frac{AO}{AO}$		
$\overline{AB} = \overline{AC}$		
$\overline{\mathrm{BO}} \cong \overline{\mathrm{CO}}$	Given	
$\Delta ABO \cong \Delta ACO$	Due to isosceles triangle	
$\Delta ABD \leftrightarrow \Delta ACD$		
$\overline{\mathrm{AD}} \cong \overline{\mathrm{AD}}$		
∠7 ≅ ∠8		
$\overline{AB} \cong \overline{AC}$		1
$\Delta ABD \cong \Delta ACD$		
∠5+∠6 = 180		
$\angle 5 = \angle 6 = 90^{\circ}$		
So AD⊥BC	Supplementary angles	
AD Passes from point O		

Q.2 Prove that the bisectors of two exterior and third interior angle of a triangle are concurrent

Given

 ΔABC

Exterior angles are $\angle ABQ$ and $\angle BAP$ \overrightarrow{AT} and \overrightarrow{BS} intersect each other at point O therefore join O to C

Draw the angle bisecter of C

 $\angle 1 \cong \angle 2$

Construction

 $\overrightarrow{OM} \perp \overrightarrow{CQ}, \overrightarrow{OL} \perp \overrightarrow{AB}, \overrightarrow{ON} \perp \overrightarrow{CP}$

Proof

Statements	Reasons
$\overline{ON} \cong \overline{OM}$ (i)	
$\overline{OL} \cong \overline{OM}$ (ii)	
$\overline{ON} \cong \overline{OL}$	
Hence Angle Bisector of C	Comparing equation (i) and (ii)
$i,e \angle 1 \cong \angle 2$	70