Exercise 12.2

Q.1 In a quadrilateral ABCD $\overline{AB}\cong \overline{BC}$ and the right bisectors of $\overline{AD},\overline{CD}$ meet each other at point N. Prove that \overline{BN} is a bisector of $\angle ABC$ Given

In the quadrilateral ABCD

$$\overline{AB} \cong \overline{BC}$$

 \overline{NM} is right bisector of \overline{CD}

 \overline{PN} is right bisector of \overline{AD}

They meet at N

To prove

 \overline{BN} is the bisector of angle ABC

Construction join N to A,B,C,D

Proof

11001		
Statements	Reasons	
$\overline{ND} \cong \overline{NA}$ (i)	N is an right bisector of \overline{AD}	
$\overline{ND} \cong \overline{NC}$ (ii)	N is on right bisector of \overline{DC}	
$\overline{NA} = \overline{NC}$ (iii)	from (i) and (ii)	
$\Delta BNC \leftrightarrow \Delta ANB$		
$\overline{NC} = \overline{NA}$	Already proved (from iii)	
$\overline{AB} \cong \overline{CB}$	Given	
$\overline{BN}\cong \overline{BN}$	Common	
$\therefore \Delta BNA \cong \Delta BNC$	$S.S.S \cong S.S.S$	
Hence $\angle ABN \cong \angle NBC$	Corresponding angles of congruent triangles	
Hence \overline{BN} is the bisector of $\angle ABC$		

Q.2 The bisectors of $\angle A, \angle B$ and $\angle C$ of a quadrilateral ABCP meet each other at point O. Prove that the bisector of $\angle P$ will also pass through the point O.

Given

ABCP is quadrilateral. \overline{AO} , \overline{BO} , \overline{CO} are bisectors of $\angle A$, $\angle B$ and $\angle C$ meet at point O.

To prove

 \overline{PO} is bisector of $\angle P$

Construction:

Join P to O.

Draw $\overline{OQ} \perp \overline{AP}$, $\overline{ON} \perp \overline{PC}$ and $\overline{OL} \perp \overline{AB}$, $\overline{OM} \perp \overline{BC}$

Proof:

11001.	
Statements	Reasons
$\overline{OM} \cong \overline{ON}$ (i)	O is on the bisector of $\angle C$
$\overline{OL} \cong \overline{OM}$ (ii)	O is on the bisector of $\angle B$
$\overline{OL} \cong \overline{OQ}$ (iii)	O is on the bisector of $\angle A$
$\overline{OQ} \cong \overline{ON}$	From i, ii, iii
Point O lines on the bisector of $\angle P$	
$\therefore \overline{OP}$ is the bisector of angle P	

Prove that the right bisector of congruent sides of an isosceles triangle and its altitude Q.3 are concurrent.

Given

 ΔABC

 $\overline{AB} \cong \overline{AC}$ due to isosceles triangle \overline{PM} is right bisector of \overline{AB}

 \overline{QN} is right bisector of \overline{AC}

 \overrightarrow{PM} and \overrightarrow{QN} intersect each other at point O

Required

The altitude of $\triangle ABC$ lies at point O

Join A to O and extend it to cut \overline{BC} at D.

 $\angle BAD \cong \angle CAD$ $\Delta BAD \cong \Delta CAD$ $\angle ODB \cong \angle ODC$ $m\angle ODM + m\angle ODC = 180^{\circ}$

 $\therefore \overline{AD} \perp \overline{BC}$

Point 0 lies on altitude \overline{AD}

Proved from (i) $S.A.S \cong S.A.S$

Each angle is 90° (Given)

Supplementary angle

Q.4 Prove that the altitudes of a triangle are concurrent.

Given

In $\triangle ABC$

AD, BE, CF are its altitudes

i.e $\overline{AD} \perp \overline{BC}, \overline{BE} \perp \overline{AC}, \overline{CF} \perp \overline{AB}$

Required AD, BE and CF are concurrent

Statements

Passing through A, B, C take

 $\overline{RQ} \| \overline{BC}, \overline{RP} \| \overline{AC} \text{ and } \overline{QP} \| \overline{AB} \text{ respectively forming a } \Delta PQR$

Reasons

Proof

$ \overline{BC} \overline{AQ} $	Construction
$\overline{AB} \ \overline{QC}$	Construction
∴ ABCQ is a ^{gm}	
Hence $\overline{AQ} = \overline{BC}$	
Similarly $\overline{AB} = \overline{QC}$	
Hence point A is midpoint RQ	
And $\overline{AD} \perp \overline{BC}$	Given
$ \overline{BC} \overline{RQ}$	Opposite sides of parallelogram ABCQ
$\overline{AD} \ \overline{RQ}$	
Thus $\overline{AD} \perp$ is right bisector of \overline{RQ}	
similarly \overline{BE} is a right bisector of \overline{RP} and	
CF is right bisector of PQ	
$\therefore \perp^s \overline{AD}, \overline{BE}, \overline{CF}$ are right bisector of sides of ΔPQR	
$\therefore \overline{AD}, \overline{BE} \text{ and } \overline{CF} \text{ are}$	
Concurrent	

Theorem12.1.6

The bisectors of the angles of a triangle are concurrent

Given

 ΔABC

To Prove

The bisector of $\angle A$, $\angle B$, and $\angle C$ are concurrent

Construction:

Draw the bisectors of $\angle B$ and $\angle C$ which intersect at point I. From I, draw

 $\overline{\text{IF}} \perp \overline{\text{AB}}$, $\overline{\text{ID}} \perp \overline{\text{BC}}$ and $\overline{\text{IE}} \perp \overline{\text{CA}}$

Proof

Statements	Reasons		
	(Any point on bisector of		
$\overline{ID} \cong \overline{IF}$	an angle is equidistance from its arms.		
Similarly			
ID≅IE_			
∴ IE≅IF	Each ≅ ID		
So the point I is on the bisector of $\angle A \dots (i)$			
Also the point I is on the bisectors of ∠ABC and ∠BCA (ii)	Construction		
Thus the bisector of $\angle A$, $\angle B$ and $\angle C$ are concurrent at I	{From (i) and (ii)}		