Exercise 11.4 The distance of the point of concurrency of the medians of a triangle from its vertices **Q.1** are respectively 1.2 cm. 1.4 cm and 1.6 cm. Find the length of its medians. Let $\triangle ABC$ with the point of concurrency of medians at G $$\overline{AG}$$ =1.2cm, \overline{BG} =1.4cm and \overline{CG} =1.6cm $$\overline{AP} = \frac{3}{2}\overline{AG} = \frac{3}{2} \times 1.2 = 1.8cm$$ $$\overline{BQ} = \frac{3}{2}\overline{BG} = \frac{3}{2} \times 1.4 = 2.1cm$$ $$\overline{CR} = \frac{3}{2}\overline{CG} = \frac{3}{2} \times 1.6 = 2.4cm$$ Prove that the point of concurrency of the medians of a triangle and the triangle which **Q.2** is made by joining the midpoint of its sides to the same. Given In \triangle ABC, AQ, CP, BR are medians which meet at G. To prove G is the point of concurrency of the medians of $\triangle ABC$ and $\triangle POR$ ΔABC | Proof | | |---|--| | Statements | Reasons | | $\overline{PR} \parallel \overline{BC}$ | P, R are midpoint of \overline{AB} , \overline{AC} | | $\overline{BQ} \parallel \overline{PR}$ | | | Similarly $\overline{QR} \parallel \overline{BP}$ | | | $\therefore PBQR$ is a parallelogram it diagonals \overline{BR} and \overline{PQ} | 'O ₂ | | bisector each other at T | | | Similarly U is the midpoint of QR and S is midpoint of \overline{PR} | | | $\therefore \overline{PU}, \overline{QS}, \overline{RT}$ are medians of ΔPQR | V | | (i) \overline{AQ} and \overline{SQ} pass through G | | | (ii) \overline{BR} and \overline{TR} pass through G | | | (iii) \overline{UP} and \overline{CP} pass through G | | | Hence G is point of concurrency of medians of ΔPQR and | | ### Example A line, through the mid-point of one side, parallel to another side of a triangle, bisects the third side. ## Given In $\triangle ABC$, D is the mid-point of \overline{AB} . $\overline{DE} \parallel \overline{BC}$ which cuts \overline{AC} at E. # To prove $$\overline{AE} \cong \overline{BC}$$ # Construction Through A, draw $\overrightarrow{LM} \parallel \overline{BC}$. #### Proof | Statements | Reasons | |---|---| | Intercepts cut by $\overrightarrow{LM}, \overline{DE}, \overline{BC}$ on \overline{AC} are congruent. | Intercepts cut by parallels \overrightarrow{LM} , \overline{DE} . | | i.e., $\overline{AE} \cong \overline{EC}$. | \overline{BC} on \overline{AB} are congruent (given) | ## **Theorem 11.1.5** **Statement:** In three or more parallel lines make congruent segments on a traversal they also intercept congruent segments on any other line that cuts them. #### Given $$\overrightarrow{AB} \parallel \overrightarrow{CD} \parallel \overrightarrow{EF}$$ The transversal \overrightarrow{LX} intersects $\overrightarrow{AB},\overrightarrow{CD}$ and \overrightarrow{EF} at the points M, N and P respectively, such that $\overrightarrow{MN} \cong \overrightarrow{NP}$. The transversal \overrightarrow{QY} intersects them at point R, S and T respectively. #### **Prove** $$\overline{RS} \cong \overline{ST}$$ #### Construction From R, draw $\overline{RU} \parallel \overline{LX}$, which meets \overline{CD} at U, from S draw $\overline{SV} \parallel \overline{LX}$ which meets \overline{EF} at V. as shown in the figure let the angles be labeled as $\angle 1$, $\angle 2$, $\angle 3$ and $\angle 4$. #### **Proof** | Statements | Reasons | | |---|--|--| | MNUR is parallelogram | $\overline{RU} \ \overline{LX}$ (Construction) $\overline{AB} \ \overline{CO}$ (given) | | | $\therefore \overline{MN} \cong \overline{RU}(i)$ | (Opposite side of parallelogram). | | | Similarly. | | | | $\overline{NP} \cong \overline{SV}(ii)$ | | | | But $\overline{MN} \cong \overline{NP}(iii)$ | Given | | | $\therefore \overline{RU} \cong \overline{SV}$ | {from (i) (ii) and (iii)} each is $\parallel \overline{LX}$ (construction) | | Also $\overline{RU} \parallel \overline{SV}$ Corresponding angles ∴ ∠1 ≅ ∠2 Corresponding angles and $\angle 3 \cong \angle 4$ In $\Delta RUS \leftrightarrow \Delta SVT$ Proved $\overline{RU} \cong \overline{SV}$ Proved $\angle 1 \cong \angle 2$ **∠**3 ≅ ∠4 Proved $\triangle RUS \cong \triangle SVT$ $S.A.A \cong S.A.A$ (Corresponding sides of congruent triangles) Hence $\overline{RS} \cong \overline{ST}$