Exercise 11.4

The distance of the point of concurrency of the medians of a triangle from its vertices **Q.1** are respectively 1.2 cm. 1.4 cm and 1.6 cm. Find the length of its medians.

Let $\triangle ABC$ with the point of concurrency of medians at G

$$\overline{AG}$$
=1.2cm, \overline{BG} =1.4cm and \overline{CG} =1.6cm

$$\overline{AP} = \frac{3}{2}\overline{AG} = \frac{3}{2} \times 1.2 = 1.8cm$$

$$\overline{BQ} = \frac{3}{2}\overline{BG} = \frac{3}{2} \times 1.4 = 2.1cm$$

$$\overline{CR} = \frac{3}{2}\overline{CG} = \frac{3}{2} \times 1.6 = 2.4cm$$

Prove that the point of concurrency of the medians of a triangle and the triangle which **Q.2** is made by joining the midpoint of its sides to the same. Given

In \triangle ABC, AQ, CP, BR are medians which meet at G.

To prove

G is the point of concurrency of the medians of $\triangle ABC$ and $\triangle POR$

 ΔABC

Proof	
Statements	Reasons
$\overline{PR} \parallel \overline{BC}$	P, R are midpoint of \overline{AB} , \overline{AC}
$\overline{BQ} \parallel \overline{PR}$	
Similarly $\overline{QR} \parallel \overline{BP}$	
$\therefore PBQR$ is a parallelogram it diagonals \overline{BR} and \overline{PQ}	'O ₂
bisector each other at T	
Similarly U is the midpoint of QR and S is midpoint of \overline{PR}	
$\therefore \overline{PU}, \overline{QS}, \overline{RT}$ are medians of ΔPQR	V
(i) \overline{AQ} and \overline{SQ} pass through G	
(ii) \overline{BR} and \overline{TR} pass through G	
(iii) \overline{UP} and \overline{CP} pass through G	
Hence G is point of concurrency of medians of ΔPQR and	

Example

A line, through the mid-point of one side, parallel to another side of a triangle, bisects the third side.

Given

In $\triangle ABC$, D is the mid-point of \overline{AB} .

 $\overline{DE} \parallel \overline{BC}$ which cuts \overline{AC} at E.

To prove

$$\overline{AE} \cong \overline{BC}$$

Construction

Through A, draw $\overrightarrow{LM} \parallel \overline{BC}$.

Proof

Statements	Reasons
Intercepts cut by $\overrightarrow{LM}, \overline{DE}, \overline{BC}$ on \overline{AC} are congruent.	Intercepts cut by parallels \overrightarrow{LM} , \overline{DE} .
i.e., $\overline{AE} \cong \overline{EC}$.	\overline{BC} on \overline{AB} are congruent (given)

Theorem 11.1.5

Statement: In three or more parallel lines make congruent segments on a traversal they also intercept congruent segments on any other line that cuts them.

Given

$$\overrightarrow{AB} \parallel \overrightarrow{CD} \parallel \overrightarrow{EF}$$

The transversal \overrightarrow{LX} intersects $\overrightarrow{AB},\overrightarrow{CD}$ and \overrightarrow{EF} at the points M, N and P respectively, such that $\overrightarrow{MN} \cong \overrightarrow{NP}$. The transversal \overrightarrow{QY} intersects them at point R, S and T respectively.

Prove

$$\overline{RS} \cong \overline{ST}$$

Construction

From R, draw $\overline{RU} \parallel \overline{LX}$, which meets \overline{CD} at U, from S draw $\overline{SV} \parallel \overline{LX}$ which meets \overline{EF} at V. as shown in the figure let the angles be labeled as $\angle 1$, $\angle 2$, $\angle 3$ and $\angle 4$.

Proof

Statements	Reasons	
MNUR is parallelogram	$\overline{RU} \ \overline{LX}$ (Construction) $\overline{AB} \ \overline{CO}$ (given)	
$\therefore \overline{MN} \cong \overline{RU}(i)$	(Opposite side of parallelogram).	
Similarly.		
$\overline{NP} \cong \overline{SV}(ii)$		
But $\overline{MN} \cong \overline{NP}(iii)$	Given	
$\therefore \overline{RU} \cong \overline{SV}$	{from (i) (ii) and (iii)} each is $\parallel \overline{LX}$ (construction)	

Also $\overline{RU} \parallel \overline{SV}$ Corresponding angles ∴ ∠1 ≅ ∠2 Corresponding angles and $\angle 3 \cong \angle 4$ In $\Delta RUS \leftrightarrow \Delta SVT$ Proved $\overline{RU} \cong \overline{SV}$ Proved $\angle 1 \cong \angle 2$ **∠**3 ≅ ∠4 Proved $\triangle RUS \cong \triangle SVT$ $S.A.A \cong S.A.A$ (Corresponding sides of congruent triangles) Hence $\overline{RS} \cong \overline{ST}$