Exercise 11.3

Q.1 Prove that the line segments joining the midpoint of the opposite side of a quadrilateral bisect each other.

Given

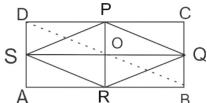
ABCD is quadrilaterals point QRSP are the mid point of the sides \overline{RP} and \overline{SQ} are joined they meet at O.

$$\overrightarrow{OP} \cong \overrightarrow{OR} \quad \overrightarrow{OQ} \cong \overrightarrow{OS}$$

Construction

Join P, Q, R and S in order join C to A or A to C

Proof



	Statements	Reasons
$SP \parallel AC \dots$ (i)		In $\triangle ADC, S, P$ are mid point

$$m\overline{SP} = \frac{1}{2}m\overline{AC}...(ii)$$

$$\overline{AC} \parallel \overline{RQ}...(iii)$$

$$m\overline{RQ} = \frac{1}{2}\overline{AC}...(iv)$$

$$m\overline{SP} \parallel \overline{RQ}...(v)$$

and
$$\overline{RQ} = \overline{SP}...(vi)$$

Now \overline{RP} and \overline{OS} diagonals of parallelogram PQRS intersect at O.

 $\therefore \overline{OP} \cong \overline{OR}$

$$\overline{OS} \cong \overline{OQ}$$

nt of AD, DC

In $\triangle ABC$, O, R are midpoint of \overline{BC} , \overline{AB}

From (ii) and (iv)

Diagonals of a parallelogram bisects each other.

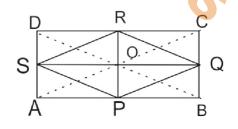
Prove that the line segments joining the midpoint of the opposite sides of a rectangle **Q.2** are the right bisectors of each other.

[Hint: Diagonals of a rectangle are congruent] Given

- (i) ABCD is a rectangle
- (ii) P, Q.R.S are the midpoints of \overline{AB} , \overline{CD} and \overline{DA}
- (iii) \overline{SO} and \overline{RP} cut each other at point O

$$\overline{OS} \cong \overline{OQ}$$

$$\overline{OP} \cong \overline{OR}$$



Construction

Join P to Q and Q to R and R to S and S to PJoin A to C and B to D

Proof
Statements
Midpoint of \overline{BC} is Q
Midpoint of \overline{AB} is P
$\therefore \overline{AC} \parallel \overline{PQ}$ (i)
$\frac{1}{2}\overline{AC} = \overline{PQ}(ii)$
In ΔADC
$\overline{AC} \parallel \overline{SR}$ (iii)
$\frac{1}{2}\overline{AC} = \overline{SR}(iv)$
$\frac{2}{PQ} = \overline{SR}$
$\overline{SP} = \overline{RQ}$
By joined B to D we can prove
$ \overline{RQ} \overline{SP} $
$m\overline{SR} \parallel m\overline{PQ}$
$m\overline{AC} \parallel m\overline{BD}$
PQRS is a parallelogram all it sides are equa
$\overline{OP} \cong \overline{OR}$
$\overline{OS} \cong \overline{OQ}$
$\Delta OQR \leftrightarrow \Delta OQP$
$\overline{OR} \cong \overline{OP}$
$\overline{OQ} \cong \overline{OQ}$
$\overline{RQ} \cong \overline{PQ}$
$\therefore \Delta OQR \cong \Delta OQP$
∠ <i>ROQ</i> ≅ ∠ <i>POQ</i> (vii)
$\angle ROQ + \angle POQ = 180(viii)$
$\angle ROQ = \angle POQ = 90^{\circ}$
Thus $\overline{PR} \perp \overline{QS}$

Given

Given

From equation (i) and (ii) each are parallel to \overline{AC} each are half of \overline{DB}

Reasons

Each of them = $\frac{1}{2}\overline{AC}$

Proved

Common

Adjacent

Supplementary angle

From (vii) and (viii)

Q.3 Prove that line segment passing the midpoint of one side and parallel to other side of a triangle also bisects the third side.

Given

In $\triangle ABC$, R is the midpoint of \overline{AB} , $\overline{RQ} \parallel \overline{BC}$

$$\overline{RQ} \parallel \overline{BS}$$

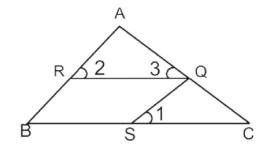
To prove

$$\overline{AQ} = \overline{QC}$$

Construction

$$\overline{QS} \parallel \overline{AB}$$

Proof



Proof	
Statements	Reasons
$\overline{RQ} \parallel \overline{BS}$	Given
$\overline{QS} \parallel \overline{BR}$	Construction
QS BR RBSQ is a Parallelogram	
Parallelogram	
$\overline{QS} \cong \overline{BR}(i)$	Opposite side
$\overline{AR} \cong \overline{RB}(ii)$	Given
$\overline{QS} \cong \overline{AR}(iii)$	From (i) and (ii)
$\angle 1 \cong \angle B$ and	40/
$\angle 1 \cong \angle 2(iv)$	
$\Delta ARQ \leftrightarrow \Delta QSC$	From (iv) From (iii) $A.A.S \cong A.A.S$
∠2 ≅ ∠1	From (iv)
$\angle 3 \cong \angle C$	
$\overline{AR} \cong SQ$	From (iii)
Hence, $\Delta ARQ \cong \Delta QSC$	$A.A.S \cong A.A.S$
$\overline{AQ} \cong \overline{QC}$	Corresponding sides

Theorem: 11.1.4

The median of triangle are concurrent and their point of concurrency is the point **Statement:** of trisection of each median.

Given $\triangle ABC$

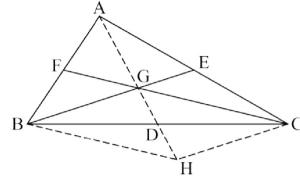
To prove

The medians of the \triangle ABC are concurrent and the point of concurrency is the point of trisection of each median

Statements

Construction

Draw two medians \overline{BE} and \overline{CF} of the $\triangle ABC$ Η which intersect each other at point G. Join A to G and produce it to the point H such that $AG \simeq \overline{GH}$ Join H to the points B and C \overline{AH} Intersects \overline{BC} at the point D.



In \triangle ACH,

$$\overline{\text{GE}} \parallel \overline{\text{HC}}$$

Or
$$\overline{BE} || \overline{HC} \cdot \cdots \cdot (i)$$

Similarly
$$\overline{CF} \parallel \overline{HB}$$
...(ii)

And

$$m\overline{GD} = \frac{1}{2}m\overline{GH}...(iii)$$

$$\overline{BD} = \overline{CD}$$

 \overline{AD} is a median of $\triangle ABC$ medians \overline{AD} , \overline{BE} and \overline{CF} pass through the point G

Now
$$\overline{GH} \cong \overline{AG}$$
...(iv)

$$m\overline{GD} = \frac{1}{2}m\overline{AG}$$

and G is the point of trisection of AD...(v)

similarly it can be proved that G is also the point of trisection of \overline{CF} and \overline{BE}

Reasons

G and E are mid-points of sides \overline{AH} and \overline{AC} respectively

G is point of \overline{BE} diagonals \overline{BC}

From (i) and (ii)

Diagonals \overline{BC} and \overline{GH} of a parallelogram BHCG intersect each other at point D.

G is the interesting point of \overline{BE} , \overline{CF} and \overline{AD} pass through it.

Construction

From (iii) and (iv)