Exercise 10.4

In $\triangle PAB$ of figure $\overline{PQ} \perp \overline{AB}$ and $\overline{PA} \cong \overline{PB}$ prove that $\overline{AQ} \cong \overline{BQ}$ and $\angle APQ \cong \angle BPQ$ **Q.1**

Given:

In Δ**P**A**B**

$$\overline{PQ} \perp \overline{AB}$$
 and $\overline{PA} \cong \overline{PB}$

To prove

$$\overline{AQ} \cong \overline{BQ}$$
 and $\angle APQ \cong \angle BPQ$

Proof

Statements	Reasons
In $\triangle APQ \leftrightarrow \triangle BPQ$	
$\overline{PA} \cong \overline{PB}$	Given
$\angle AQP \cong \angle BQP$	Given $\overline{PQ} \perp \overline{AB}$
$\overline{PQ} \cong \overline{PQ}$	Common
$\therefore \Delta APQ \cong \Delta BPQ$	H.S≅H.S
$So \overline{AQ} \cong \overline{BQ}$	Corresponding sides of congruent triangles
and $\angle APQ \cong \angle BPQ$	Corresponding angles of congruent triangles

In the figure $m\angle C \cong m\angle D = 90^{\circ}$ and $\overline{BC} \cong \overline{AD}$ prove that $\overline{AC} \cong \overline{BD}$ and $\angle BAC \cong \overline{BD}$ **Q.2**

∠ABD

Given

In the figure given $m\angle C = m\angle D = 90^{\circ}$

$$\overline{BC} \cong \overline{AD}$$

To Prove

$$\overline{AC} \cong \overline{BD}$$

 $\therefore \overline{AC} \cong \overline{BD}$

 $\therefore \angle BAC \cong \angle ABD$

$$\angle BAC \cong \angle ABD$$

Corresponding angles of congruent triangles

Q.3 In the figure, $m\angle B = m\angle D = 90^{\circ}$ and $\overline{AD} \cong \overline{BC}$ prove that ABCD is a rectangle

Given

In the figure

$$m \angle B = m \angle D$$
 90° and $\overline{AD} \cong \overline{BC}$

To prove

ABCD is a rectangle

Construction

Join A to C

Proof

