Exercise 10.1

Q.1 In the given figure

$$\angle 1 \cong \angle 2$$
 and $\overline{AB} \cong \overline{CB}$

Prove that

 $\Delta ABD \cong \Delta CBE$

Proof

Statements	Reasons
In $\triangle ABD \leftrightarrow \triangle CBE$	
$\overline{AB} \cong \overline{CB}$	Given
∠BAD ≅ ∠BCE	Given $\angle 1 \cong \angle 2$
∠ABD ≅ ∠CBE	Common
$\triangle ABD \cong \triangle CBE$	$S.A.A \cong S.A.A$

Q.2 From a point on the bisector of an angle, perpendiculars are drawn to the arms of the angle. Prove that these perpendiculars are equal in measure.

Given

 \overline{BD} is bisector of $\angle ABC$. P is point on \overline{BD} and \overline{PL} are \overline{PM} are perpendicular to \overline{AB} and \overline{CB} respectively

To prove

 $\overline{PL} \cong \overline{PM}$

Proof

·D

Q.3 In a triangle ABC, the bisects of $\angle B$ and $\angle C$ meet in point I prove that I is equidistant from the three sides by $\triangle ABC$

Given

In $\triangle ABC$, the bisector of $\angle B$ and $\angle C$ meet at I and \overline{IL} , \overline{IM} , and \overline{IN} are perpendiculars to the three sides of $\triangle ABC$.

To prove

 $\overline{IL} \cong \overline{IM} \cong \overline{IN}$

Proof

Frooi	
Statements	Reasons
In $\Delta ILB \leftrightarrow \Delta IMB$	
$\overline{\mathrm{BI}}\cong\overline{\mathrm{BI}}$	Common
∠IBL ≅ ∠IBM	Given BI is bisector of ∠B
$\angle ILB \cong \angle IMB$	Given each angle is rights angles
$\Delta ILB \cong \Delta IMB$	$SAA \cong S.A.A$
$\therefore \overline{\mathbb{IL}} \cong \overline{\mathbb{IM}}$ (i)	Corresponding sides of $\cong \Delta$'s
Similarly	
$\Delta IAC \cong \Delta INC$	
So $\overline{IL} \cong \overline{IN}$ (ii)	Corresponding sides of $\cong \Delta s$
from (i) and (ii)	Corresponding sides of $\equiv \Delta s$
$\overline{\mathrm{IL}} \cong \overline{\mathrm{IM}} \cong \overline{\mathrm{IN}}$	
:. I is equidistant from the three sides of	
ΔABC.	

Theorem 10.1.2

If two angles of a triangles are congruent then the sides opposite to them are also congruent

A

Given

In $\triangle ABC$, $\angle B \cong \angle C$

To prove

 $\overline{AB} \cong \overline{AC}$

Construction

Draw the bisector of $\angle A$, meeting \overline{BC} at point D

Proof

Example 1

If one angle of a right triangle is of 30°, the hypotenuse is twice as long as the side opposite to the angle.

Given

In \triangle ABC, m \angle B=90° and $m\angle$ C = 30°

To prove

 $m\overline{AC} = 2m\overline{AB}$

Constructions

At, B construct∠CBD of 30°

Let \overline{BD} cut \overline{AC} at the point D.

Proof

 $m\angle ABD=m\angle ABC, mCBD=60^{\circ}$

 \therefore mADB = 60°

∴ ∆ABD is equilateral

 $\therefore \overline{AB} \cong \overline{BD} \cong \overline{CD}$

In $\triangle BCD$, $\overline{BD} \cong \overline{CD}$

Thus
$$m\overline{AC}$$
 = $m\overline{AD} + m\overline{CD}$
= $m\overline{AB} + m\overline{AB}$
= $2(m\overline{AB})$

 $m\angle ABC=90^{\circ}, m\angle C=30^{\circ}$ $m\angle ABC=90^{\circ}, m\angle CBD=30^{\circ}$

Sum of measures of \angle s of a \triangle is 180°

Each of its angles is equal to 60°

Sides of equilateral Δ

$$\angle C = \angle CBD$$
 (each of 30),

$$\overline{AD} \cong \overline{AB}$$
 and $\overline{CD} \cong \overline{BD} \cong \overline{AB}$

Example 2

If the bisector of an angle of a triangle bisects the side opposite to it, the triangle is isosceles.

Given

In $\triangle ABC$, AD bisect $\angle A$ and $BD \cong CD$

To prove

 $\overline{AB} \simeq \overline{AC}$

Construction

Produce AD to E, and take $ED \cong AD$ Joint C to E

Proof

Statements Reasons

In $\triangle ADB \leftrightarrow EDC$

 $\overline{AD} \cong \overline{ED}$

 $\angle ADB \cong \angle EDC$

 $\overline{BD} \cong \overline{CD}$

 $\therefore \Delta ADB \cong \Delta EDC$

 $\therefore \overline{AB} \cong \overline{EC} \dots (i)$

and $\angle BAD \cong \angle E$

But $\angle BAD \cong \angle CAD$

 $\therefore \angle E \cong \angle CAD$

In $\triangle ACE, \overline{AC} \cong \overline{EC}$...(ii)

Hence $\overline{AB} \cong \overline{AC}$

Construction

Vertical angles

Given

S.A.S. Postulate

Corresponding sides

Corresponding angles

Given

Each≅ ∠BAD

 $\angle E \cong \angle CAD$ (proved)

From (i) and (ii)