Exercise 16.1

Q.1 Show that the line segment joining the midpoint of opposite sides of a parallelogram divides it into two equal parallelograms.

Given

ABCD is a parallelogram. L is the midpoint of \overline{AB} and M is the midpoint of \overline{DC}

To prove

Area of parallelogram ALMD = area of parallelogram LBCM.

Proof	
Statements	Reasons
AB DC	Opposite sides of parallelogram
	ABCD.
$\overline{AL} \cong \overline{LB} \dots (i)$	L is midpoint of \overline{AB}
The parallelograms ALMD and LBCM are on equal	From equation (i)
bases and between the same parallel lines \overline{AB} and	
$\overline{\mathrm{DC}}$	
Hence area of parallelogram ALMD= area of	They have equal areas
parallelogram LBCM.	

Q.2 In a parallelogram ABCD, m \overline{AB} =10cm the altitudes Corresponding to Sides AB and AD are respectively 7cm and 8cm Find \overline{AD}

$$\overline{AB} = 10 \text{ cm}$$

$$\overline{DH} = 7$$
cm

$$\overline{MB} = 8$$
cm

$$\overline{AD} = ?$$

Formula

Area of parallelogram = base x altitude

$$\overline{AB} \times \overline{DH} = \overline{AD} \times \overline{IB}$$

$$10 \times 7 = \overline{AD} \times 8$$

$$\frac{70^{35}}{8^4} = \overline{AD}$$

$$\frac{35}{4} = \overline{AD}$$

$$\overline{AD} = \frac{35}{4}$$

Or

$$\overline{AD} = 8.75$$
cm

В

Q.3 If two parallelograms of equal areas have the same or equal bases, their altitude are equal

In parallelogram opposite side and opponents angles are Congruent.

Given

Parallelogram ABCD and parallelogram MNOP

OD is altitude of parallelogram ABCD

PQ is altitude of parallelogram MNOP

Area of ABCD $\parallel^{gm} \cong Area of MNOP \parallel^{gm}$

To prove

$$\operatorname{m} \overline{OD} \cong \operatorname{m} \overline{PQ}$$

Proof

11001	
Statements	Reasons
Area of parallelogram ABCD=	Given
Area of parallelogram MNOP	
Area of parallelogram= base × height	Given
$\overline{AB} \times \overline{OD} = \overline{MN} \times \overline{PQ}$	YO -
We know that	
$\overline{AB} = \overline{MN}$	
So	
$AB \times \overline{OD} = \overline{PO}$	Proved
$\frac{\mathcal{A}\mathcal{B}}{\mathcal{A}\mathcal{B}} \times \overline{\mathrm{OD}} = \overline{\mathrm{PQ}}$	Tioved
$\overline{OD} = \overline{PQ}$	

Theorem 16.1.3

Triangle on the same base and of the same (i.e...equal) altitudes are equal in area

Given

 $\Delta\mbox{'s ABC}$, DBC on the

Same base \overline{BC} and

having equal altitudes

To prove

Area of (ΔABC) = area of (ΔDBC)

Construction:

Draw $\overline{BM} \parallel \text{to} \overline{CA}, \overline{CN} \parallel \text{to} \overline{BD}$ meeting \overline{AD} produced in M.N.

Proof

Statements	Reasons
ΔABC and ΔDBC are between the same \parallel^s	Their altitudes are equal
Hence MADN is parallel to \overline{BC}	
∴ Area gm (BCAM)= Area gm (BCND)	These gm are on the same base
But $\triangle ABC = \frac{1}{2} \parallel^{gm} (BCAM)(ii)$	\overline{BC} and between the same $\ ^{s}$
And $\Delta DBC = \frac{1}{2} \parallel^{gm} (BCND)$ (iii)	Each diagonal of a gm
Hence area ($\triangle ABC$) = Area($\triangle DBC$)	Bisects it into two congruent triangles
	From (i) (ii) and (iii)

Theorem 16.1.4

Triangles on equal bases and of equal altitudes are equal in area.

Given

 Δ s ABC, DEF on equal bases \overline{BC} , \overline{EF} and having altitudes equal

To prove

Area (
$$\triangle$$
ABC) = Area (\triangle DEF)

Construction:

Place the Δs ABC and DEF so that their equal bases \overline{BC} and \overline{EF} are in the same straight line BCEF and their vertices on the same side of it .Draw \overline{BX} $\|\overline{CA}$ and \overline{FY}

 $\|\overline{ED}$ meeting \overline{AD} produced in X, Y respectively

Proof

Statements	Reasons
ΔABC , ΔDEF are between the same parallels	Their altitudes are equal (given)

∴ XADY is \parallel^{gm} to BCEF

∴ area $\|^{gm}$ (BCAX) = A area $\|^{gm}$ (EFYD)----(i)

These $\|^{gm}$ are on equal bases and between

the same parallels

Diagonal of a gm bisect it

But $\triangle ABC = \frac{1}{2} \parallel^{gm} (BCAX) ---- (ii)$

And area of $\Delta DEF = \frac{1}{2}$ area of \parallel^{gm} (EFYD)_ (iii)

 $\therefore area (\Delta ABC) = area (\Delta DEF)$

From (i),(ii)and(iii) Science academy Notes