
Review Exercise 3

Q.1 Multiple choice Questions. Choose of the correct answer.

(a)
$$a = \log_x n$$

(b)
$$x = \log_n a$$

(c)
$$x = \log_a n$$

(d)
$$a = \log_n x$$

(ii) The relation
$$y=\log_z x$$
 implies...

(a)
$$x^y = z$$

(b)
$$z^y = x$$

(c)
$$x^z = y$$

(d)
$$y^z = x$$

The logarithm of any number to itself as base is... (iv)

(v) Log e=...,where
$$e \approx 2.718$$

The value of $\log \left(\frac{p}{a} \right)$ is... (vi)

(a)
$$\log p - \log q$$

(b)
$$\frac{\log p}{\log q}$$

(c)
$$\log p + \log q$$

(b)
$$\frac{\log p}{\log q}$$

(d) $\log q - \log p$
(b) $\log(p-q)$
(d) $\log q - \log p$

$\operatorname{Log} p\operatorname{-log} q$ is same as ... (vii)

(a)
$$\log\left(\frac{q}{p}\right)$$

(b)
$$\log(p-q)$$

(c)
$$\frac{\log p}{\log q}$$

(d)
$$\log q - \log p$$

$Log(m^n)$ can be written as... (viii)

(a)
$$(\log m)^n$$

(c)
$$n \log m$$

(d)
$$\log(mn)$$

- (a) $\log_a c$
- (c) $\log_a b$

- **(b)** $\log_c a$
- (d) $\log_b c$

- Log_v will be equal to... **(x)**

(b) $\frac{\log_x z}{\log_y z}$

ANSWER KEY

i	ii	iii	iv	\mathbf{v}	vi	vii	viii	ix	X
c	b	d	a	b	a	d	С	b	c

Complete the following: **Q.2**

- (i) For common logarithm, the base is...
- The integral part of the common logarithm of a number is called the ... (ii)
- The decimal part of the common logarithm of a number is called the ... (iii)
- If $x = \log y$, then y is called the... of x. (iv)
- If the characteristic of the logarithm of a number have...zero(s) immediately after the **(v)** decimal point.
- If the characteristic of the logarithm of a number is 1, that number will have digits in (vi) its integral part.

ANSWER KEY

i	ii	iii	iv	V	vi
10	Characteristic	Mantissa	Antilogarithm	One	2

- Q.3 Find the value of x in the following.
- (i) $\log_3 x = 5$

Solution: $\log_3 x = 5$

Write in exponential form.

$$3^5 = x$$

$$243 = x$$
 Ans

(ii)
$$\log_4 256 = x$$

Solution: $\log_{4} 256 = x$

Write in exponential form

$$4^x = 256$$

$$A^x - A^4$$

$$x = 4$$

$$x = 4$$
 Ans

(iii)
$$\log_{625} 5 = \frac{1}{4}x$$

Solution: $\log_{625} 5 = \frac{1}{4} x$

Write in exponential form

$$(625)^{\frac{1}{4}x} = 5$$

$$(625)^{\frac{x}{4}} = 5$$

$$\left(5^4\right)^{\frac{x}{4}} = 5$$

$$5^{\frac{4x}{4}} = 5$$
$$5^x = 5^1$$
$$x = 1$$
Ans

(iv)
$$\log_{64} x = -\frac{2}{3}$$

Solution:
$$\log_{64} x = -\frac{2}{3}$$

Write in exponential form

$$(64)^{\frac{-2}{3}} = x$$

$$\binom{4^{3}}{6}^{3} = x$$

$$4^{-3} = x$$

$$\frac{1}{4^2} = x$$

$$\frac{1}{16} = x \text{ Ans}$$

Q.4 Find the value of x in the following.

(i)
$$\log x = 2.4543$$

Solution:
$$\log x = 2.4543$$

$$\log x = 2.4543$$

$$x = \text{antilog } 2.4543$$

$$Ch = 2$$

$$x = 284.6 \, \text{Ans}$$

(ii)
$$\log x = 0.1821$$

Solution:
$$\log x = 0.1821$$

$$\log x = 0.1821$$

$$x = \text{antilog } 0.1821$$

$$Ch = 0$$

$$x = 1.521 \, \text{Ans}$$

(iii) $\log x = 0.0044$

Solution:
$$\log x = 0.0044$$

$$\log x = 0.0044$$

$$x = \text{antilog } 0.0044$$

$$Ch = 0$$

 $x = 1.010$ **Ans**

(iv) $\log x = 1.6238$

Solution: $\log x = 1.6238$

$$\log x = \overline{1}.6238$$

$$x = \text{antilog } \overline{16333}$$

$$Ch=\overline{I}$$

$$x = 0.4206 \, \text{Ans}$$

Q.5 If $\log 2 = 0.3010$, $\log 3 = 0.4771$, and $\log 5 = 0.6990$ then find the values of the following.

$$= \log(9 \times 5)$$

$$=\log(3^2\times 5)$$

$$= \log 3^2 + \log 5$$

$$=2\log 3+\log 15$$

$$= 2(0.4771) + 0.6990$$

$$=0.9542+0.6990$$

$$=1.6532 \, \text{Ans}$$

(ii) $\log \frac{16}{15}$

Solution: $\log \frac{16}{15}$

$$=\log\frac{2^4}{3\times 5}$$

$$= \log 2^4 - \log (3 \times 5)$$

$$= \log 2 - \log(3 \times 3)$$

= $4\log 2 - (\log 3 + \log 5)$

$$= \log 2^4 - \log 3 - \log 5$$

$$-10g2 - 10g3 - 10g$$
.

$$= 4 \log 2 - \log 3 - \log 5$$

$$= 4(0.3010) - 0.4771 - 0.6990$$

$$=1.2040-0.4771-0.6990$$

= 0.0279 **Ans**

Solution: log 0.048

$$=\log\frac{48}{1000}$$

$$= \log \frac{2 \times 2 \times 2 \times 2 \times 3}{2 \times 2 \times 2 \times 5 \times 5 \times 5}$$

$$=\log\frac{2^4\times 3}{2^3\times 5^3}$$

$$= \log 2^4 + \log 3 - \log 2^3 - \log 5^3$$

$$= 4\log 2 + \log 3 - 3\log 2 - 3\log 5$$

$$=4(0.3010)+0.4771-3(0.3010)-3(0.6990)$$

$$=1.2040+0.4771-0.9030-2.0970$$

$$=-1.3189$$

$$=-1-0.3189$$

$$=-1-1+1-0.3189$$

$$=-2+0.6811$$

$$= \overline{2}.6811 \, \text{Ans}$$

Q.6 Simplify the following.

(i)
$$\sqrt[3]{25.47}$$

Solution: $\sqrt[3]{25.47}$

Let
$$x = \sqrt[3]{25.74}$$

$$=(25.47)^{\frac{1}{3}}$$

Taking log on both sides

$$\log x = \log(25.47)^{\frac{1}{3}}$$

$$=\frac{1}{3}\log 25.47$$

$$=\frac{1}{3}(1.4060)$$

$$\log x = 0.4687$$

$$x = \operatorname{antilog} 0.4687$$

$$Ch = 0$$

$$x = 2.943 \, \text{Ans}$$

$\sqrt[5]{342.2}$ (ii)

Solution: $\sqrt[5]{342.2}$

Let

$$x = \sqrt[5]{342.2}$$

$$x = (242.)^{\frac{1}{5}}$$

Taking log on both sides

$$\log x = (342.2)^{\frac{1}{5}}$$

$$\log x = \frac{1}{5} \log 342.2$$

$$=\frac{1}{5}(2.5343)$$

$$\log x = 0.5069$$

$$\log x = \text{antilog } 0.5069$$

$$Ch = 0$$

$$x = 3.213 \, \text{Ans}$$

(iii)
$$\frac{(8.97)^3 \times (3.95)^2}{\sqrt[3]{15.37}}$$

Solution:
$$\frac{(8.97)^3 \times (3.95)^2}{\sqrt[3]{15.37}}$$

Let
$$x = \frac{(8.97)^3 \times (3.95)^2}{\sqrt[3]{15.37}}$$

Taking log on both sides

$$\log x = \log \frac{\left(8.97\right)^3 \times \left(3.95\right)^2}{\sqrt[3]{15.37}}$$

$$= \log(8.97)^3 + \log(3.95)^2 - \log(15.37)^{\frac{1}{3}}$$

$$=3\log 8.97 + 2\log 3.95 - \frac{1}{3}\log 15.37$$

$$=3(0.9528)+2(0.5966)-\frac{1}{3}(1.1867)$$

10x0

$$= 2.8584 + 1.1932 - 0.3956$$

$$\log x = 3.656$$

$$x = \text{antilog } 3.656$$

$$Ch = 3$$

$$x = 4529 \, \text{Ans}$$

Unit 3: Logarithms

Overview

Scientific Notation:

A number written in the form $a \times 10^n$, where $1 \le a < 10$ and n is an integer, is called the scientific notation.

Logarithm of a Real Number:

If $a^x = y$ they x is called the logarithm of y to the base 'a' and is written as $\log_a y = x$, where a > 0, $a \ne 1$ and y > 0

Characteristic of logarithm of the Number:

An integral part which is positive for a number greater than 1 and negative for a number less than 1, is called the characteristic of logarithm of the number.

Mantissa of the logarithm of the Number:

A decimal part which is always positive, is called the mantissa of the logarithm of the number.

Antilogarithm:

The number whose logarithm is given is called antilogarithm.