Exercise 3.2

Find the common logarithms of Q.1each of the following numbers.

- (i) 232.92 **Solution: 232.92** Suppose x = 232.92Taking log $\log x = \log 232.92$ Ch = 2Mantissa = 0.3672 $\log x = 2.3672$ Ans
- (ii) 29.326 **Solution: 29.326** Suppose *x*= 29.326Taking log $\log x = \log 29.326$ Ch = 1Mantissa = 0.4672 $\log x = 1.4672$ Ans
- (iii) 0.00032 **Solution:** 0.00032 Suppose x = 0.00032Taking log $\log x = \log 0.00032$ $Ch = \overline{4}$ Mantissa = 0.5051 $\log x = 4.5051 \text{ Ans}$
- (iv) 0.3206 **Solution:** 0.3206 Suppose x = 0.3206Taking log: $\log x = \log 0.3206$ Ch = 1Mantissa = 0.5059 $\log x = 1.5059$ **Ans**

- If $\log 31.09 = 1.4926$, find the **Q.2** value of the following. $\log 31.09 = 1.4926$ Then
- $\log 3.109 = 0.4926$ (i)
- $\log 310.9 = 2.4926$ (ii)
- $\log 0.003109 = \overline{3.4926}$ (iii)
- $0.3109 = \bar{1}.4926$ (iv)

Solution:

- log3.109 (i) Characteristics = 0Mantissa = 0.4926 $\log 3.109 = 0.4926 \, \text{Ans}$
- log310.9 (ii) Characteristics = 2Mantissa =0.4926log 310.9 = 2.4926 Ans
- log 0.003109 (iii) Characteristics = $\overline{3}$ Mantissa = 0.4926 $\log 0.003109 = \overline{3}.4926$ Ans
- log 0.3109 (iv) Characteristics = $\overline{1}$ Mantissa = 0.4926 $\log 0.3109 = \overline{1.4926} \, \text{Ans}$

Q.3 Find the numbers whose common logarithms are

3.5621 (i) **Solution:**

$$\log x = 3.5621$$

Ch=3(If ch is positive, then plus for reference point) Mantissa = 0.5621

x = antilog 3.5621

x = 3649.0 Ans

1.7427 (ii)

Solution:

 $\log x = 1.7427$

 $Ch = \bar{1}$

Mantissa =
$$0.7427$$

 $x = \operatorname{antilog} \bar{1}.7427$

x = 0.5530 Ans

Q.4 What replacement for the unknown in each of the following will make the true statements?

(i)
$$\log_3 81 = L$$

Solution:
$$\log_3 81 = L$$

Writing in exponential form.

$$3^{L} = 81$$

$$3^{L} = 3^{4}$$

∵ Bases are equal so

$$L = 4$$
 Ans

(ii)
$$\log_a 6 = 0.5$$

Solution: $\log_a 6 = 0.5$

$$a^{0.5} = 6$$

$$a^{\frac{1}{2}} = 6$$

 $\sqrt{a} = 6$ Taking square on both

sides

$$\sqrt{(a)}^2 = (6)^2$$

$$a = 36$$
 Ans

(iii)
$$\log_5 n = 2$$

Write in exponential form

$$5^2 = n$$

$$25 = n$$

Or
$$n = 25$$
 Ans

(iv)
$$10^P = 40$$

Solution:
$$10^{P} = 40$$

Changing into logarithmic form

$$P = \log_{10} 40$$

$$= \log 40$$

$$=1.6021$$
 Ans

Q.5 Evaluate.

(i)
$$\log_2 \frac{1}{128}$$

Solution:
$$\log_2 \frac{1}{128}$$

Suppose
$$\log_2 \frac{1}{128} = x$$

Writing in exponential form.

$$2^x = \frac{1}{128}$$

$$2^x = \frac{1}{2^7}$$

$$2^x = 2^{-7}$$

∴ Bases are equal so

$$x = -7$$
 Ans

(ii) $\log 512$ to the base $2\sqrt{2}$

Solution:
$$\log_{2\sqrt{2}} 512 = x$$

Writing in exponential form

$$\left(2\sqrt{2}\right)^x = 512$$

$$\left(2^{1}.2^{\frac{1}{2}}\right)^{x}=2^{9}$$

$$\left(2^{\frac{3}{2}}\right)^x = 2^9$$

$$2^{\frac{3}{2}x} = 2^9$$

: Bases are equal so

$$\frac{3}{2}x = 9$$

$$x = \frac{9 \times 2}{3}$$

$$x = \frac{18^{6}}{3}$$

$$x = 6$$
 Ans

Q.6 Find the value of x from the following statements.

(i)
$$\log_2 x = 5$$

Solution:
$$\log_2 x = 5$$

Write in exponential form.

$$2^5 = x$$

$$32 = x$$
 Ans

(ii)
$$\log_{81} 9 = x$$

Solution:
$$\log_{81} 9 = x$$

Writing in the exponential form.

$$81^x = 9$$

$$\left(9^2\right)^x = 9$$

$$9^{2x} = 9$$

$$2x = 1$$

$$x = \frac{1}{2}$$
 Ans

(iii)
$$\log_{64} 8 = \frac{x}{2}$$

Solution:
$$\log_{64} 8 = \frac{x}{2}$$

Writing in exponential form.

$$64^{\frac{x}{2}} = 8$$

$$\left(8^{\cancel{2}}\right)^{\frac{x}{\cancel{2}}} = 8$$

$$8^{x} = 8$$

$$x = 1$$
 Ans

(iv)
$$\log_x 64 = 2$$

Solution:
$$\log_x 64 = 2$$

ion coocaden. Mores Writing in exponential form

$$x^2 = 64$$

$$x^2 = 8^2$$

$$x = 8$$
 Ans

(v)
$$\log_3 x = 4$$

Solution:
$$\log_3 x = 4$$

$$3^4 = x$$

$$81 = x$$

Or
$$x = 81 \text{ Ans}$$