
Review Exercise 2

Q.1 Multiple choice questions. Choose the correct answer.

(a)
$$\frac{\sqrt[3]{x^2}}{9}$$

(b)
$$\frac{\sqrt{x^3}}{9}$$
 (d) $\frac{\sqrt{x^3}}{8}$

(c)
$$\frac{\sqrt[3]{x^2}}{8}$$

(d)
$$\frac{\sqrt{x^3}}{8}$$

(ii) Write
$$\sqrt[7]{x}$$
 in the exponential form _____

(b)
$$x^7$$

(c)
$$x^{\frac{1}{7}}$$

(d)
$$x^{\frac{7}{2}}$$

(iii) Write
$$4^{\frac{2}{3}}$$
 with radical sing

(a)
$$\sqrt[3]{4^2}$$

(b)
$$\sqrt[2]{4^3}$$

(c)
$$\sqrt[2]{4^3}$$

(d)
$$\sqrt{4^6}$$

(iv) In
$$\sqrt[3]{35}$$
 the radicand is;

(b)
$$\frac{1}{3}$$

(v)
$$\left(\frac{25}{16}\right)^{-\frac{1}{2}} = \underline{\hspace{1cm}}$$

(a)
$$\frac{5}{4}$$

(b)
$$\frac{4}{5}$$

(c)
$$-\frac{5}{4}$$

(d)
$$-\frac{4}{5}$$

(vi) The conjugate of
$$5+4i$$
 is _____

(a)
$$-5 + 4i$$

(b)
$$-5-4i$$

(c)
$$5-4i$$

(d)
$$5 + 4i$$

The value of i^9 is; (vii)

(d)
$$-i$$

(viii)	Every real number is						
	(a) Positive integer	(b) A rational number					
	(c) A negative integer	(d) A complex number					
(ix)	Real point of $2ab(i+i^2)$ is						
	(a) 2ab	(b) $-2ab$					
	(c) 2 <i>abi</i>	(\mathbf{d}) $-2abi$					
(x)	Imaginary part of $-i(3i+2)$ is	<u> </u>					
7/	(a) -2	(b) 2					
	(c) 3	(d) -3					
(xi)	Which of the following sets have the closure property w.r.t addition						
	(a) {0}	(b) {0,1}					
	(c) {0,1}	(d) $\left\{1, \sqrt{2}, \frac{1}{2}\right\}$					
(xii)	Name the property of real number used in $\left[-\frac{\sqrt{5}}{2}\right] \times 1 = -\frac{\sqrt{5}}{2}$						
(AII)	$\begin{bmatrix} 2 \end{bmatrix}^{1-} 2 = \begin{bmatrix} 2 \end{bmatrix}$						
	(a) Additive identity	(b) Additive inverse					
	(c) Multiplicative identity	(d) Multiplicative inverse					
(xiii)	If $x, y, z \in R, z < 0$, then $x < y \Rightarrow >$						
()	(a) $xz < yz$	(b) $xz > yz$					
	(c) $xz = yz$	(d) None of these					
		· C ₂					
(xiv)	IF $a,b \in R$, only one of $a=b$ or $a < b$ or $a > b$ hold is called						
, ,	(a) Trichotomy property	(b) Transitive property					
	(c) Additive property	(d) Multiplicative property					
(xv)	xv) A non-terminating, non-recurring decimal represents						
, ,	(a) A natural number	(b) A rational number					
	(c) An irrational number	(d) A prime number					
ANSWER KEY i a vi c xi a							

ANSWER KEY

i	a	vi	c	xi	a		
ii	c	vii	c	xii	c		
iii	a	viii	d	xiii	b		
iv	c	ix	b	xiv	a		
\mathbf{v}	b	X	a	XV	С		

Q.2 True or False? Identity

- (i) Division is not an associative operation. True
- (ii) Every whole number is a natural number. False
- (iii) Multiplicative inverse of 0.02 is 50. True
- (iv) π is rational number. False
- (v) Every integer is a rational number. True
- (vi) Subtraction is a commutative operation. False
- (vii) Every real number is a rational number. False
- (viii) Decimal representation of a rational number is either terminating or recurring. True

(ix)
$$1.\overline{8} = 1 + \frac{8}{9}$$
 True

Q.3 Simplify the following

(i)
$$\sqrt[4]{81y^{-12}x^{-8}}$$

Solution:

$$= (3^{4} y^{12} x^{-8})^{\frac{1}{4}}$$

$$= 3^{4 \times \frac{1}{4}} y^{-12^{3} \times \frac{1}{4}} x^{-8^{2} \times \frac{1}{4}}$$

$$= 3 y^{-3} x^{-2}$$

$$\sqrt[4]{81 y^{-12} x^{-8}} = \frac{3}{y^{3} x^{2}}$$
 Ans

(ii)
$$\sqrt{25x^{10}y^{8m}}$$

Solution:

$$= \sqrt{25x^{10n}y^{8m}}$$

$$= \left(5^2x^{10n}y^{8m}\right)^{\frac{1}{2}}$$

$$= 5^{2\times\frac{1}{2}}.x^{10n^5\times\frac{1}{2}}.y^{8m^4\times\frac{1}{2}}$$

$$\sqrt{25x^{10}y^{8m}} = 5x^{5n}.y^{4m} \text{ Ans}$$

(iii)
$$\left[\frac{x^3 y^4 z^5}{x^{-2} y^{-1} z^{-5}} \right]^{\frac{1}{5}}$$

Solution:

$$= (x^{3+2}.y^{4+1}.z^{5+5})^{\frac{1}{5}}$$

$$= (x^{5}y^{5}z^{10})^{\frac{1}{5}}$$

$$= x^{5 \times \frac{1}{5}} \times y^{5 \times \frac{1}{5}} \times z^{10^{2} \times \frac{1}{5}}$$

$$\left[\frac{x^3y^4z^5}{x^{-2}y^{-1}z^{-5}}\right]^{\frac{1}{5}} = x.y.z^2 \text{ Ans}$$

(iv)
$$\left(\frac{32x^{-6}y^{-4}z}{625x^4yz^{-4}}\right)^{\frac{2}{5}}$$

Solution:

$$= \left(\frac{2^{5} x^{-4} y^{-4} z}{5^{4} x^{4} y z^{-4}}\right)^{\frac{2}{5}}$$

$$= \left[\frac{2^{5} z^{1+4}}{5^{4} x^{4+6} \times y^{1+4}}\right]^{\frac{2}{5}}$$

$$= \left[\frac{2^{5} z^{5}}{5^{4} x^{10} y^{5}}\right]^{\frac{2}{5}}$$

$$= \frac{2^{\frac{5 \times \frac{2}{5}}{5} \times z} z^{\frac{5 \times \frac{2}{5}}{5}}}{5^{\frac{4 \times \frac{2}{5}}{5} \times x} z^{\frac{10^{2} \times \frac{2}{5}}{5}} \times y^{\frac{5 \times \frac{2}{5}}{5}}}$$

$$= \frac{2^{2} \times z^{2}}{5^{\frac{8}{5}} \times x^{4} \times y^{2}}$$

$$= \frac{4z^{2}}{5^{\frac{1+\frac{3}{5}}{5}} \times x^{4} y^{2}}$$

$$= \frac{4z^{2}}{5^{\frac{1+\frac{3}{5}}{5}} \times x^{4} y^{2}}$$

 $\left(\frac{32x^{-6}y^{-4}z}{625x^4yz^{-4}}\right)^{\frac{2}{5}} = \frac{4z^2}{5 \cdot 5^{\frac{3}{5} \cdot 4 \cdot 2}}$ Ans

Q.4 Simplify
$$\sqrt{\frac{(216)^{\frac{2}{3}} \times (25)^{\frac{1}{2}}}{(0.04)^{-\frac{3}{2}}}}$$

Solution:
$$\sqrt{\frac{(216)^{\frac{2}{3}} \times (25)^{\frac{1}{2}}}{(0.04)^{-\frac{3}{2}}}}$$

$$= \sqrt{\frac{\left(6^3\right)^{\frac{2}{3}} \times \left(5^2\right)^{\frac{1}{2}}}{\left(\frac{4}{100}\right)^{-\frac{3}{2}}}}$$

$$\sqrt{\frac{4}{4}}$$

$$=\sqrt{\frac{6^2 \times 5}{\left(5^2\right)^{\frac{3}{2}}}}$$

$$= \sqrt{\frac{6 \times 5}{(5)^3}}$$
$$= \sqrt{\frac{6^2}{5^3 \times 5^{-1}}}$$

$$= \sqrt{\frac{6^2}{5^{3-1}}}$$

$$=\sqrt{\frac{6^2}{5^2}}$$

$$=\sqrt{\left(\frac{6}{5}\right)^2}$$

$$= \left(\frac{6}{5}\right)^{2 \times \frac{1}{2}}$$

$$=\frac{6}{5}$$
 Ans

Q.5
$$\left(\frac{a^p}{a^q}\right)^{p+q} \times \left(\frac{a^q}{a^r}\right)^{q+r} \div 5\left(a^{q} \cdot a^r\right)^{p-r}$$

Solution:

$$= \frac{\left(a^{p-q}\right)^{p+q} \left(a^{q-r}\right)^{q+r}}{5\left(a^{p+r}\right)^{p-r}}$$
$$= \frac{a^{(p-q)(p+q)}a^{(q-r)(q+r)}}{5a^{(p+r)(p-r)}}$$

$$= \frac{a^{p^2 - q^2} a^{q^2 - r^2}}{5a^{p^2 - r^2}}$$

$$= \frac{a^{p^2 - q^2 + q^2 - r^2}}{5a^{p^2 - r^2}}$$

$$= \frac{a^{p^2 - r^2 - p^2 + r^2}}{5}$$

$$= \frac{a^0}{5}$$

$$= \frac{a^0}{5}$$

$$\left(\frac{a^p}{a^q}\right)^{p+q} \times \left(\frac{a^q}{a^r}\right)^{q+r} \div 5\left(a^{q} \cdot a^r\right)^{p-r}$$

$$= \frac{1}{5} \text{ Ans}$$

Q.6 Simplify
$$\left(\frac{a^{2l}}{a^{l+m}}\right)\left(\frac{a^{2m}}{a^{m+n}}\right)\left(\frac{a^{2n}}{a^{n+2}}\right)$$
Solution:
$$= a^{2l-l-m}a^{2m-m-n}a^{2n-n-n}$$

$$= a^{l-m}a^{m-n}a^{n-l}$$

$$= a^{l-m+m-n+n-l}$$

$$= a^{0}$$

$$\left(\frac{a^{2l}}{a^{l+m}}\right)\left(\frac{a^{2m}}{a^{m+n}}\right)\left(\frac{a^{2n}}{a^{n+2}}\right) = 1$$
 Ans

Solution:

$$= a^{2l-l-m} a^{2m-m-n} a^{2n-n-n}$$

$$= a^{l-m} a^{m-n} a^{n-l}$$

$$= a^{l-m+m-n+n-l}$$

$$= a^{0}$$

$$\left(\frac{a^{2l}}{a^{l+m}}\right) \left(\frac{a^{2m}}{a^{m+n}}\right) \left(\frac{a^{2n}}{a^{n+2}}\right) = 1 \text{ Ans}$$

Q.7 Simplify
$$\sqrt[3]{\frac{a^1}{a^m}} \times \sqrt[3]{\frac{a^m}{a^n}} \times \sqrt[3]{\frac{a^n}{a^r}}$$

Solution:

$$= \sqrt[3]{a^{l-m}} \sqrt[3]{a^{m-n}} \sqrt[3]{a^{n-l}}$$

$$= (a^{l-m})^{\frac{1}{3}} \times (a^{m-n})^{\frac{1}{3}} \times (a^{n-l})^{\frac{1}{3}}$$

$$= a^{\frac{l-m}{3}} \times a^{\frac{m-n}{3}} \times a^{\frac{n-l}{3}}$$

$$= a^{\frac{l-m}{3} + \frac{m-n}{3} + \frac{n-l}{3}}$$

$$= a^{\frac{l-m+m-n+n-l}{3}}$$

$$= a^{\frac{0}{3}}$$

$$= a^{0}$$

$$\sqrt[3]{\frac{a^{l}}{a^{m}}} \times \sqrt[3]{\frac{a^{m}}{a^{n}}} \times \sqrt[3]{\frac{a^{n}}{a^{r}}} = 1 \text{ Ans}$$

Unit 2: Real and Complex Numbers

Overview

Natural Numbers:

The numbers 1, 2, 3,... which we use for counting certain objects are called natural numbers or positive integers. The set natural numbers is denoted by N.

i.e.
$$N = \{1, 2, 3, ...\}$$

Whole Numbers:

If we include 0 in the set of natural number, the resulting set is the set of whole numbers, denoted by W,

i.e.
$$W = \{0,1,2,3,...\}$$

Integers:

The set of integers consist of positive integers, 0 and negative integers and is denoted by Z i.e. $Z\{..., -3, -2, -1, 0, 1, 2, 3, ...\}$

Rational Numbers:

All numbers of the form $\frac{p}{q}$ where p,q are integers and q is not zero are called rational numbers. The set of rational numbers is denoted by Q,

i.e.
$$Q = \left\{ \frac{p}{q} \mid p, q \in Z \land q \neq 0, (p,q) = 1 \right\}$$

Irrational Numbers:

The numbers which cannot be expressed as quotient of integers are called irrational numbers. The set of irrational numbers is denoted by Q',

i.e.
$$Q' = \left\{ x \mid x \neq \frac{p}{q}, p, q \in Z \land q \neq 0 \right\}$$

The union of the set of rational numbers and irrational numbers is known as the set of real numbers. It is denoted by R,

i.e.
$$R = Q \cup Q'$$

Types of Rational Numbers:

(i) Terminating Decimal Fractions

The decimal fraction in which there are finite number of digits in its decimal part is called a terminating decimal fraction. For example $\frac{2}{5} = 0.4$ and $\frac{3}{8} = 0.375$.

(ii) Recurring and Non-terminating Decimal Fractions:

The decimal fraction (non-terminating) in which some digits are repeated again and again in the same order in its decimal part is called recurring decimal fraction.

For example
$$\frac{2}{9} = 0.2222...$$
 and $\frac{4}{11} = 0.363636...$

Concept of Radicals and Radicands:

In the radical $\sqrt[n]{a}$, the symbol $\sqrt{\ }$ is called the radical sign, n is called the index of the radical and the real number a under the radical sign is called the radicand or base.

Base and Exponent:

In the exponential notation of (read as a to the nth power) we call 'a' as the base and 'n' as the exponent or the power t which the base is raised.

Definition of a Complex Number:

A number of the form z = a + bi where a and b are real numbers and $i - \sqrt{-1}$, is called a complex number and is represented by z i.e., z = a + ib

Conjugate of a Complex Number:

If we change i to -i in z=a+bi, we obtain another complex number a-bi called the complex conjugate of z and is denoted by \overline{z} (read z bar).